You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Gian-Carlo Rota was born in Vigevano, Italy, in 1932. He died in Cambridge, Mas sachusetts, in 1999. He had several careers, most notably as a mathematician, but also as a philosopher and a consultant to the United States government. His mathe matical career was equally varied. His early mathematical studies were at Princeton (1950 to 1953) and Yale (1953 to 1956). In 1956, he completed his doctoral thesis under the direction of Jacob T. Schwartz. This thesis was published as the pa per "Extension theory of differential operators I", the first paper reprinted in this volume. Rota's early work was in analysis, more specifically, in operator theory, differ ential equations, ergodic theory, and...
. This volume will be of interest to experts as well as beginning graduate students (particularly as a source of research problems).
Indiscrete Thoughts gives a glimpse into a world that has seldom been described - that of science and technology as seen through the eyes of a mathematician. The era covered by this book, 1950 to 1990, was surely one of the golden ages of science and of the American university. Cherished myths are debunked along the way as Gian-Carlo Rota takes pleasure in portraying, warts and all, some of the great scientific personalities of the period. Rota is not afraid of controversy. Some readers may even consider these essays indiscreet. This beautifully written book is destined to become an instant classic and the subject of debate for decades to come.
The Star and the Whole: Gian-Carlo Rota on Mathematics and Phenomenology, authored by Fabrizio Palombi, is the first book to study Rota's philosophical reflection. Rota (1932-1999) was a leading figure in contemporary mathematics and an outstanding philosopher, inspired by phenomenology, who made fundamental contributions to combinatorial analysis,
Gian-Carlo Rota was one of the most original and colourful mathematicians of the 20th century. His work on the foundations of combinatorics focused on the algebraic structures that lie behind diverse combinatorial areas, and created a new area of algebraic combinatorics. Written by two of his former students, this book is based on notes from his influential graduate courses and on face-to-face discussions. Topics include sets and valuations, partially ordered sets, distributive lattices, partitions and entropy, matching theory, free matrices, doubly stochastic matrices, Moebius functions, chains and antichains, Sperner theory, commuting equivalence relations and linear lattices, modular and geometric lattices, valuation rings, generating functions, umbral calculus, symmetric functions, Baxter algebras, unimodality of sequences, and location of zeros of polynomials. Many exercises and research problems are included, and unexplored areas of possible research are discussed. A must-have for all students and researchers in combinatorics and related areas.
This is a volume of essays and reviews that delightfully explores mathematics in all its moods — from the light and the witty, and humorous to serious, rational, and cerebral. These beautifully written articles from three great modern mathematicians will provide a source for supplemental reading for almost any math class. Topics include: logic, combinatorics, statistics, economics, artificial intelligence, computer science, and broad applications of mathematics. Readers will also find coverage of history and philosophy, including discussion of the work of Ulam, Kant, and Heidegger, among others.
The purpose of this book is to present the three basic ideas of geometrical probability, also known as integral geometry, in their natural framework. In this way, the relationship between the subject and enumerative combinatorics is more transparent, and the analogies can be more productively understood. The first of the three ideas is invariant measures on polyconvex sets. The authors then prove the fundamental lemma of integral geometry, namely the kinematic formula. Finally the analogues between invariant measures and finite partially ordered sets are investigated, yielding insights into Hecke algebras, Schubert varieties and the quantum world, as viewed by mathematicians. Geometers and combinatorialists will find this a most stimulating and fruitful story.
In April of 1996 an array of mathematicians converged on Cambridge, Massachusetts, for the Rotafest and Umbral Calculus Workshop, two con ferences celebrating Gian-Carlo Rota's 64th birthday. It seemed appropriate when feting one of the world's great combinatorialists to have the anniversary be a power of 2 rather than the more mundane 65. The over seventy-five par ticipants included Rota's doctoral students, coauthors, and other colleagues from more than a dozen countries. As a further testament to the breadth and depth of his influence, the lectures ranged over a wide variety of topics from invariant theory to algebraic topology. This volume is a collection of articles written in Rota's honor. Some of them were presented at the Rotafest and Umbral Workshop while others were written especially for this Festschrift. We will say a little about each paper and point out how they are connected with the mathematical contributions of Rota himself.
Gian-Carlo Rota was born in Vigevano, Italy, in 1932. He died in Cambridge, Mas sachusetts, in 1999. He had several careers, most notably as a mathematician, but also as a philosopher and a consultant to the United States government. His mathe matical career was equally varied. His early mathematical studies were at Princeton (1950 to 1953) and Yale (1953 to 1956). In 1956, he completed his doctoral thesis under the direction of Jacob T. Schwartz. This thesis was published as the pa per "Extension theory of differential operators I", the first paper reprinted in this volume. Rota's early work was in analysis, more specifically, in operator theory, differ ential equations, ergodic theory, and...
Gian-Carlo Rota was born in Vigevano, Italy, in 1932. He died in Cambridge, Mas sachusetts, in 1999. He had several careers, most notably as a mathematician, but also as a philosopher and a consultant to the United States government. His mathe matical career was equally varied. His early mathematical studies were at Princeton (1950 to 1953) and Yale (1953 to 1956). In 1956, he completed his doctoral thesis under the direction of Jacob T. Schwartz. This thesis was published as the pa per "Extension theory of differential operators I", the first paper reprinted in this volume. Rota's early work was in analysis, more specifically, in operator theory, differ ential equations, ergodic theory, and...