You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume comprises selected, revised papers from the Joint CIM-WIAS Workshop, TAAO 2017, held in Lisbon, Portugal, in December 2017. The workshop brought together experts from research groups at the Weierstrass Institute in Berlin and mathematics centres in Portugal to present and discuss current scientific topics and to promote existing and future collaborations. The papers include the following topics: PDEs with applications to material sciences, thermodynamics and laser dynamics, scientific computing, nonlinear optimization and stochastic analysis.
This text corresponds to a graduate mathematics course taught at Carnegie Mellon University in the spring of 1999. Included are comments added to the lecture notes, a bibliography containing 23 items, and brief biographical information for all scientists mentioned in the text, thus showing that the creation of scientific knowledge is an international enterprise.
Interfaces are geometrical objects modelling free or moving boundaries and arise in a wide range of phase change problems in physical and biological sciences, particularly in material technology and in dynamics of patterns. Especially in the end of last century, the study of evolving interfaces in a number of applied fields becomes increasingly important, so that the possibility of describing their dynamics through suitable mathematical models became one of the most challenging and interdisciplinary problems in applied mathematics. The 2000 Madeira school reported on mathematical advances in some theoretical, modelling and numerical issues concerned with dynamics of interfaces and free boundaries. Specifically, the five courses dealt with an assessment of recent results on the optimal transportation problem, the numerical approximation of moving fronts evolving by mean curvature, the dynamics of patterns and interfaces in some reaction-diffusion systems with chemical-biological applications, evolutionary free boundary problems of parabolic type or for Navier-Stokes equations, and a variational approach to evolution problems for the Ginzburg-Landau functional.
The modelling and the study of phase transition phenomena are capital issues as they have essential applications in material sciences and in biological and industrial processes. We can mention, e.g., phase separation in alloys, ageing of materials, microstructure evolution, crystal growth, solidification in complex alloys, surface diffusion in the presence of stress, evolution of the surface of a thin flow in heteroepitaxial growth, motion of voids in interconnects in integrated circuits, treatment of airway closure disease by surfactant injection, fuel injection, fire extinguishers etc., This book consists of 11 contributions from specialists in the mathematical modelling and analysis of phase transitions. The content of these contributions ranges from the modelling to the mathematical and numerical analysis. Furthermore, many numerical simulations are presented. Finally, the contributors have tried to give comprehensive and accurate reference lists. This book should thus serve as a reference book for researchers interested in phase transition phenomena.
In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientists.
This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.
This book contains the papers presented at the conference on “Mathematical Models and Methods for Smart Materials”, held in Italy in 2001. The papers are divided into four parts:”Methods in Materials Science” deals mainly with mathematical techniques for the investigation of physical systems, such as liquid crystals, materials with internal variables, amorphous materials, and thermoelastic materials. Also, techniques are exhibited for the analysis of stability and controllability of classical models of continuum mechanics and of dynamical systems.”Modelling of Smart Materials” is devoted to models of superfluids, superconductors, materials with memory, nonlinear elastic solids, a...
The volume contains a collection of original papers and surveys in various areas of Differential Equations, Control Theory and Optimization written by well-known specialists and is thus useful for PhD students and researchers in applied mathematics.
This volume originates from the INDAM Symposium on Trends on Applications of Mathematics to Mechanics (STAMM), which was held at the INDAM headquarters in Rome on 5–9 September 2016. It brings together original contributions at the interface of Mathematics and Mechanics. The focus is on mathematical models of phenomena issued from various applications. These include thermomechanics of solids and gases, nematic shells, thin films, dry friction, delamination, damage, and phase-field dynamics. The papers in the volume present novel results and identify possible future developments. The book is addressed to researchers involved in Mathematics and its applications to Mechanics.