You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book pretends to bring the state-of-art research results on advanced control from both the theoretical and practical perspectives. The fundamental and advanced research results as well as the contributions in terms of the technical evolution of control theory are of particular interest. This book can serve as a bridge between people who are working on the theoretical and practical research on control theory, and facilitate the proposal of development of new control techniques and its applications. In addition, this book presents educational importance to help students and researchers to know the frontiers of the control technology.
This book presents recent issues on theory and practice of Kalman filters, with a comprehensive treatment of a selected number of concepts, techniques, and advanced applications. From an interdisciplinary point of view, the contents from each chapter bring together an international scientific community to discuss the state of the art on Kalman filter-based methodologies for adaptive/distributed filtering, optimal estimation, dynamic prediction, nonstationarity, robot navigation, global navigation satellite systems, moving object tracking, optical communication systems, and active power filters, among others. The theoretical and methodological foundations combined with extensive experimental explanation make this book a reference suitable for students, practicing engineers, and researchers in sciences and engineering.
This book constitutes the refereed proceedings of the 13th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2012, held in Cartagena de Indias, Colombia, in November 2012. The 75 papers presented were carefully reviewed and selected from 170 submissions. The papers are organized in topical sections on knowledge representation and reasoning, information and knowledge processing, knowledge discovery and data mining, machine learning, bio-inspired computing, fuzzy systems, modelling and simulation, ambient intelligence, multi-agent systems, human-computer interaction, natural language processing, computer vision and robotics, planning and scheduling, AI in education, and knowledge engineering and applications.
The biennial CONTROLO conferences are the main events promoted by The CONTROLO 2016 – 12th Portuguese Conference on Automatic Control, Guimarães, Portugal, September 14th to 16th, was organized by Algoritmi, School of Engineering, University of Minho, in partnership with INESC TEC, and promoted by the Portuguese Association for Automatic Control – APCA, national member organization of the International Federation of Automatic Control – IFAC. The seventy-five papers published in this volume cover a wide range of topics. Thirty-one of them, of a more theoretical nature, are distributed among the first five parts: Control Theory; Optimal and Predictive Control; Fuzzy, Neural and Genetic ...
With rise of smart medical sensors, cloud computing and the health care technologies, “connected health” is getting remarkable consideration everywhere. Recently, the Internet of Things (IoT) has brought the vision of a smarter world into reality. Cloud computing fits well in this scenario as it can provide high quality of clinical experience. Thus an IoT-cloud convergence can play a vital role in healthcare by offering better insight of heterogeneous healthcare content supporting quality care. It can also support powerful processing and storage facilities of huge data to provide automated decision making. This book aims to report quality research on recent advances towards IoT-Cloud con...
Ongoing advancements in modern technology have led to significant developments in artificial intelligence. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Artificial Intelligence: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of the latest breakthroughs and recent progress in artificial intelligence. Highlighting relevant technologies, uses, and techniques across various industries and settings, this publication is a pivotal reference source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of artificial intelligence.
Presents the latest scholarly research on the concepts, paradigms, and algorithms of computational intelligence and its constituent methodologies, such as evolutionary computation, neural networks, and fuzzy logic. This volume ncludes coverage on a broad range of topics and perspectives such as cloud computing, sampling in optimization, and swarm intelligence.
For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.
Fuzzy Modeling and Control: Methods, Applications and Research opens by recommending a new fuzzy RANSAC algorithm based on the reinforcement learning concept to improve modeling performance under the outlier noise. The authors also propose a novel methodology for online modeling of multivariable Hammerstein evolving fuzzy models with minimum realization in state space from experimental data. Results characterized by strongly coupled nonlinearities demonstrate the computational efficiency of the proposed methodology. Later, two types of neural networks are applied to find the approximate solutions of the fully fuzzy nonlinear system, and a superior gradient descent algorithm is proposed in order to train the neural networks. Lastly, the authors propose a novel online evolving fuzzy Takagi-Sugeno state-space model identification approach for nonlinear multivariable systems. To circumvent "the curse of dimensionality", the algorithm uses tools for monitoring the quality of the existing clusters. (Novinka)