You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Quantum computation and information is a new, rapidly developing interdisciplinary field. Its fundamental concepts and central results may not be easily understood without facing numerous technical details.Building on the basic concepts introduced in Vol I, this second volume deals with various important aspects, both theoretical and experimental, of quantum computation and information in depth. The areas include quantum data compression, accessible information, entanglement concentration, limits to quantum computation due to decoherence, quantum error-correction, and the first experimental implementations of quantum information protocols. This volume also includes a selection of special topics: chaos and quantum to classical transition, quantum trajectories, quantum computation and quantum chaos, and the Zeno effect.
Quantum computation and information is a new, rapidly developing interdisciplinary field. This book provides the reader a useful and not-too-heavy guide. It offers a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required. Volume 1 may be used as a textbook for a one-semester introductory course in quantum information and computation, both for upper-level undergraduate students and for graduate students. It contains a large number of solved exercises, which are an essential complement to the text, as they will help the student to become familiar with the subject.
'The book is a useful compendium of most significant topics in quantum information and computation … It is readable by any undergraduate or graduate student in physics, mathematics, computer science, chemistry or engineering … The book has a simple, attractive, easy to grasp and systematic treatment, with the final goal to be used as a substantial wide-ranging primer and single comprehensive material for quantum computation and information without the need for consulting supplementary texts.'Contemporary PhysicsQuantum computation and information is a rapidly developing interdisciplinary field. It is not easy to understand its fundamental concepts and central results without facing numer...
QUANTUMCOMM 2009––the International Conference on Quantum Communi- tion and Quantum Networking (from satellite to nanoscale)––took place in Vico Equense near Naples, Italy, during October 26–30, 2009. The conference made a significant step toward stimulating direct dialogue between the communities of quantum physics and quantum information researchers who work with photons, atoms, and electrons in pursuit of the common goal of investigating and utilizing the transfer of physical information between quantum systems. This meeting brought together experts in quantum communication, quantum inf- mation processing, quantum nanoscale physics, quantum photonics, and networking. In the ligh...
Quantum computation and information is a rapidly developing interdisciplinary field. It is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader with a useful guide. In particular, the initial chapters offer a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required. Various important aspects of quantum computation and information are covered in depth, starting from the foundations (the basic concepts of computational complexity, energy, entropy, and information, quantum superposition and entanglement, elementary quantum gates, the main quantum...
This journal is devoted to the latest research on physics, publishing articles on everything from elementary particle behavior to black holes and the history of the universe.
This wide-ranging book introduces information as a key concept not only in physics, from quantum mechanics to thermodynamics, but also in the neighboring sciences and in the humanities. The central part analyzes dynamical processes as manifestations of information flows between microscopic and macroscopic scales and between systems and their environment. Quantum mechanics is interpreted as a reconstruction of mechanics based on fundamental limitations of information processing on the smallest scales. These become particularly manifest in quantum chaos and in quantum computing. Covering subjects such as causality, prediction, undecidability, chaos, and quantum randomness, the book also provides an information-theoretical view of predictability. More than 180 illustrations visualize the concepts and arguments. The book takes inspiration from the author's graduate-level topical lecture but is also well suited for undergraduate studies and is a valuable resource for researchers and professionals.
None
An accessible guide to how semiconductor electronics work and how they are manufactured, for professionals and interested readers with no electronics engineering background Semiconductor Basics is an accessible guide to how semiconductors work. It is written for readers without an electronic engineering background. Semiconductors are the basis for almost all modern electronic devices. The author—an expert on the topic—explores the fundamental concepts of what a semiconductor is, the different types in use, and how they are different from conductors and insulators. The book has a large number of helpful and illustrative drawings, photos, and figures. The author uses only simple arithmetic...
There are new and important advancements in todays complexity theories in ICT and requires an extraordinary perspective on the interaction between living systems and information technologies. With human evolution and its continuous link with the development of new tools and environmental changes, technological advancements are paving the way for new evolutionary steps. Complexity Science, Living Systems, and Reflexing Interfaces: New Models and Perspectives is a collection of research provided by academics and scholars aiming to introduce important advancements in areas such as artificial intelligence, evolutionary computation, neural networks, and much more. This scholarly piece will provide contributions that will define the line of development in complexity science.