You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The contributions in this volume discuss numerous hot topics of interdisciplinary interest in plasma physics, astrophysics, and fluid dynamics. It collects the articles presented at a Workshop that has gathered world experts with a broad spectrum of research interests.
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
The Conference covered a wide range of themes in various disciplines. In the field of English, the conference focused on digital tools in teaching and learning, the use of AI in language teaching and learning, literature in English language teaching, teacher training, and professional development, as well as linguistic competence in English language teachers. For those interested in mathematics, the conference explored topics such as computational methods for linear and non-linear optimization, mathematical models for computer science, numerical analysis, boundary value problems, real and complex analysis, probability and statistics, fluid dynamics, sequence spaces, mathematics education, ap...
An advanced textbook on AFD introducing astrophysics students to the necessary fluid dynamics, first published in 2007.
Written by an international leader in the field, this is a coherent and accessible account of the concepts that are now vital for understanding cutting-edge work on supermassive black holes. These include accretion disc misalignment, disc breaking and tearing, chaotic accretion, the merging of binary supermassive holes, the demographics of supermassive black holes, and the defining effects of feedback on their host galaxies. The treatment is largely analytic and gives in-depth discussions of the underlying physics, including gas dynamics, ideal and non-ideal magnetohydrodynamics, force-free electrodynamics, accretion disc physics, and the properties of the Kerr metric. It stresses aspects where conventional assumptions may be inappropriate and encourages the reader to think critically about current models. This volume will be useful for graduate or Masters courses in astrophysics, and as a handbook for active researchers in the field. eBook formats include colour figures while print formats are greyscale only.
Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This graduate textbook, first published in 2007, provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.
e-ASTROGAM (enhanced ASTROGAM) is a breakthrough Observatory space mission dedicated to the study of the Universe using gamma-rays in the mostly unexplored and crucial MeV-GeV energy range. e-ASTROGAM has been proposed for the ESA M5 mission. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources. e-ASTROGAM will also determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. e-ASTROGAM has already collected the interest of more that 350 scientists from 19 different countries. About 100 scientists met in Padua from February 28 to March 2, 2017, to discuss some of the more relevant scientific aspects of the mission. This book collects their contributions.
This unique book contains a biographical portrait, accounts of Chandrasekhar's role and impact on modern science, historical perspectives and personal reminiscences, several of which appeared in Physics Today, and reviews by leading experts in areas which Prof. Chandrasekhar pioneered. The reviews, which appeared in the Bulletin of the Astronomical Society of India, are either based on papers presented by scholars in the Chandrasekhar Centennial Symposium at the University of Chicago during 15-17 October 2010, or were additional reviews covering topics not represented at the conference by other distinguished astrophysicists. It provides a glimpse of some of the most exciting areas of modern astrophysics as a tribute to Prof Chandrasekhar on his birth centenary.
Proceedings of a conference held in Heidelberg, Germany, July 15-20, 2013.
None