You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Valuation and Risk Management in Energy Markets surveys the mechanics of energy markets and the valuation of structures commonly arising in practice. The presentation balances quantitative issues and practicalities facing portfolio managers, with substantial attention paid to the ways in which common methods fail in practice and to alternative methods when they exist. The material spans basic fundamentals of markets, statistical analysis of price dynamics, and a sequence of increasingly challenging structures, concluding with issues arising at the enterprise level. In totality, the material has been selected to provide readers with the analytical foundation required to function in modern energy trading and risk management groups.
The foundation for the subject of mathematical finance was laid nearly 100 years ago by Bachelier in his fundamental work, Theorie de la speculation. In this work, he provided the first treatment of Brownian motion. Since then, the research of Markowitz, and then of Black, Merton, Scholes, and Samuelson brought remarkable and important strides in the field. A few years later, Harrison and Kreps demonstrated the fundamental role of martingales and stochastic analysis in constructing and understanding models for financial markets. The connection opened the door for a flood of mathematical developments and growth. Concurrently with these mathematical advances, markets have grown, and developmen...
Introductory Statistics
Discrete Differential Geometry (DDG) is an emerging discipline at the boundary between mathematics and computer science. It aims to translate concepts from classical differential geometry into a language that is purely finite and discrete, and can hence be used by algorithms to reason about geometric data. In contrast to standard numerical approximation, the central philosophy of DDG is to faithfully and exactly preserve key invariants of geometric objects at the discrete level. This process of translation from smooth to discrete helps to both illuminate the fundamental meaning behind geometric ideas and provide useful algorithmic guarantees. This volume is based on lectures delivered at the 2018 AMS Short Course ``Discrete Differential Geometry,'' held January 8-9, 2018, in San Diego, California. The papers in this volume illustrate the principles of DDG via several recent topics: discrete nets, discrete differential operators, discrete mappings, discrete conformal geometry, and discrete optimal transport.
Louis Kauffman discusses applications of knot theory to physics, Nadrian Seeman discusses how topology is used in DNA nanotechnology, and Jonathan Simon discusses the statistical and energetic properties of knots and their relation to molecular biology."--BOOK JACKET.
Proceedings of a conference held in Santa Barbara, California, May 20-22, 1993
A collection of previous published papers by the author on the subject of complexity economics, appearing from the 1980s to the present.
This volume is based on lectures delivered at the 2022 AMS Short Course “3D Printing: Challenges and Applications” held virtually from January 3–4, 2022. Access to 3D printing facilities is quickly becoming ubiquitous across college campuses. However, while equipment training is readily available, the process of taking a mathematical idea and making it into a printable model presents a big hurdle for most mathematicians. Additionally, there are still many open questions around what objects are possible to print, how to design algorithms for doing so, and what kinds of geometries have desired kinematic properties. This volume is focused on the process and applications of 3D printing for...
Symbolic dynamics originated as a tool for analyzing dynamical systems and flows by discretizing space as well as time. The development of information theory gave impetus to the study of symbol sequences as objects in their own right. Today, symbolic dynamics has expanded to encompass multi-dimensional arrays of symbols and has found diverse applications both within and beyond mathematics. This volume is based on the AMS Short Course on Symbolic Dynamics and its Applications. It contains introductory articles on the fundamental ideas of the field and on some of its applications. Topics include the use of symbolic dynamics techniques in coding theory and in complex dynamics, the relation between the theory of multi-dimensional systems and the dynamics of tilings, and strong shift equivalence theory. Contributors to the volume are experts in the field and are clear expositors. The book is suitable for graduate students and research mathematicians interested in symbolic dynamics and its applications.
Since their emergence in 1917, tomography and inverse problems remain active and important fields that combine pure and applied mathematics and provide strong interplay between diverse mathematical problems and applications. The applied side is best known for medical and scientific use, in particular, medical imaging, radiotherapy, and industrial non-destructive testing. Doctors use tomography to see the internal structure of the body or to find functional information, such asmetabolic processes, noninvasively. Scientists discover defects in objects, the topography of the ocean floor, and geological information using X-rays, geophysical measurements, sonar, or other data. This volume, based ...