Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
  • Language: en
  • Pages: 435

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. ...

Neural Networks: Tricks of the Trade
  • Language: en
  • Pages: 753

Neural Networks: Tricks of the Trade

  • Type: Book
  • -
  • Published: 2012-11-14
  • -
  • Publisher: Springer

The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.

Explainable Natural Language Processing
  • Language: en
  • Pages: 107

Explainable Natural Language Processing

This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.

Explainable Artificial Intelligence: A Practical Guide
  • Language: en
  • Pages: 104

Explainable Artificial Intelligence: A Practical Guide

  • Type: Book
  • -
  • Published: 2024-12-02
  • -
  • Publisher: CRC Press

This book explores the growing focus on artificial intelligence (AI) systems in both industry and academia. It evaluates and justifies AI applications while enhancing trust in AI outcomes and aiding comprehension of AI feature development. Key topics include an overview of explainable AI, black box model understanding, interpretability techniques, practical XAI applications, and future trends and challenges in XAI. Technical topics discussed in the book include: Explainable AI overview Understanding black box models Techniques for model interpretability Practical applications of XAI Future trends and challenges in XAI

Artificial Neural Networks and Machine Learning – ICANN 2016
  • Language: en
  • Pages: 580

Artificial Neural Networks and Machine Learning – ICANN 2016

  • Type: Book
  • -
  • Published: 2016-08-26
  • -
  • Publisher: Springer

The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions. They were organized in topical sections named: from neurons to networks; networks and dynamics; higher nervous functions; neuronal hardware; learning foundations; deep learning; classifications and forecasting; and recognition and navigation. There are 47 short paper abstracts that are included in the back matter of the volume.

Medical Data Analysis and Processing using Explainable Artificial Intelligence
  • Language: en
  • Pages: 269

Medical Data Analysis and Processing using Explainable Artificial Intelligence

  • Type: Book
  • -
  • Published: 2023-11-06
  • -
  • Publisher: CRC Press

The text presents concepts of explainable artificial intelligence (XAI) in solving real world biomedical and healthcare problems. It will serve as an ideal reference text for graduate students and academic researchers in diverse fields of engineering including electrical, electronics and communication, computer, and biomedical Presents explainable artificial intelligence (XAI) based machine analytics and deep learning in medical science Discusses explainable artificial intelligence (XA)I with the Internet of Medical Things (IoMT) for healthcare applications Covers algorithms, tools, and frameworks for explainable artificial intelligence on medical data Explores the concepts of natural langua...

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 798

Machine Learning and Knowledge Discovery in Databases

Chapters “On the Current State of Reproducibility and Reporting of Uncertainty for Aspect-Based SentimentAnalysis” and “Contextualized Graph Embeddings for Adverse Drug Event Detection” are licensed under theterms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapter.

Deep Learning
  • Language: en
  • Pages: 801

Deep Learning

  • Type: Book
  • -
  • Published: 2016-11-18
  • -
  • Publisher: MIT Press

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concep...

Pattern Recognition
  • Language: en
  • Pages: 607

Pattern Recognition

This book constitutes the refereed proceedings of the 44th DAGM German Conference on Pattern Recognition, DAGM GCPR 2022, which was held during September 27 – 30, 2022. The 37 papers presented in this volume were carefully reviewed and selected from 78 submissions. They were organized in topical sections as follows: ​machine learning methods; unsupervised, semi-supervised and transfer learning; interpretable machine learning; low-level vision and computational photography; motion, pose estimation and tracking; 3D vision and stereo; detection and recognition; language and vision; scene understanding; photogrammetry and remote sensing; pattern recognition in the life and natural sciences; systems and applications.

Explainable Artificial Intelligence
  • Language: en
  • Pages: 480

Explainable Artificial Intelligence

None