You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the first-ever book on smoothed particle hydrodynamics (SPH) and its variations, covering the theoretical background, numerical techniques, code implementation issues, and many novel and interesting applications. It contains many appealing and practical examples, including free surface flows, high explosive detonation and explosion, underwater explosion and water mitigation of explosive shocks, high velocity impact and penetration, and multiple scale simulations coupled with the molecular dynamics method. An SPH source code is provided and coupling of SPH and molecular dynamics is discussed for multiscale simulation, making this a friendly book for readers and SPH users.
Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., mic...
Based on the widely used finite element method (FEM) and the latest Meshfree methods, a next generation of numerical method called Smoothed Point Interpolation Method (S-PIM) has been recently developed. The S-PIM is an innovative and effective combination of the FEM and the meshfree methods, and enables automation in computation, modeling and simulations — one of the most important features of the next generation methods. This important book describes the various S-PIM models in a systematic, concise and easy-to-understand manner. The underlying principles for the next generation of computational methods, G space theory, novel weakened weak (W2) formulations, techniques for shape function...
The Finite Element Method (FEM) has become an indispensable technology for the modelling and simulation of engineering systems. Written for engineers and students alike, the aim of the book is to provide the necessary theories and techniques of the FEM for readers to be able to use a commercial FEM package to solve primarily linear problems in mechanical and civil engineering with the main focus on structural mechanics and heat transfer.Fundamental theories are introduced in a straightforward way, and state-of-the-art techniques for designing and analyzing engineering systems, including microstructural systems are explained in detail. Case studies are used to demonstrate these theories, methods, techniques and practical applications, and numerous diagrams and tables are used throughout.The case studies and examples use the commercial software package ABAQUS, but the techniques explained are equally applicable for readers using other applications including NASTRAN, ANSYS, MARC, etc. - A practical and accessible guide to this complex, yet important subject - Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality
The term “first-principles calculations” is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from ‘first principles’, i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approaches have been developed for small molecular systems since the late 1920s, it was not until the advent of the density functional theory (DFT) in the 1960s that accurate “first-principles” calculations could be conducted for crystalline materials. The rapid development of this method over the past two decades allowed it to evolve from an explanatory to a truly predictive tool. Yet, challenges remain: complex chemical compositions, variable external conditions (such as pressure), defects, or properties that rely on collective excitations—all represent computational and/or methodological bottlenecks. This Special Issue comprises a collection of papers that use DFT to tackle some of these challenges and thus highlight what can (and cannot yet) be achieved using first-principles calculations of crystals.
The polygon-mesh approach to 3D modeling was a huge advance, but today its limitations are clear. Longer render times for increasingly complex images effectively cap image complexity, or else stretch budgets and schedules to the breaking point. Comprised of contributions from leaders in the development and application of this technology, Point-Based Graphics examines it from all angles, beginning with the way in which the latest photographic and scanning devices have enabled modeling based on true geometry, rather than appearance. From there, it's on to the methods themselves. Even though point-based graphics is in its infancy, practitioners have already established many effective, economical techniques for achieving all the major effects associated with traditional 3D Modeling and rendering. You'll learn to apply these techniques, and you'll also learn how to create your own. The final chapter demonstrates how to do this using Pointshop3D, an open-source tool for developing new point-based algorithms. - The first book on a major development in computer graphics by the pioneers in the field - Shows how 3D images can be manipulated as easily as 2D images are with Photoshop
Here are the printed proceedings of EPMESC X, held on August 21-23, 2006 in Sanya, Hainan Island of China. It includes 14 full papers of plenary and semi-plenary lectures and approximately 166 one-page summaries. The accompanying CD-ROM includes all 180 full papers presented at the conference.
Computational Mechanics is the proceedings of the International Symposium on Computational Mechanics, ISCM 2007. This conference is the first of a series created by a group of prominent scholars from the Mainland of China, Hong Kong, Taiwan, and overseas Chinese, who are very active in the field. The book includes 22 full papers of plenary and semi-plenary lectures and approximately 150 one-page summaries.
This book presents detailed methods on a variety of aspects of Salmonella research, focusing on those which provide landmarks for future discovery. It is the first comprehensive volume of methods and protocols for studying Salmonella and will be indispensable to researchers engaged in the study of Salmonella, and enterobacteria in general. Each chapter provides a short overview of the topic, followed by detailed explanations of techniques.