You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Brain-computer interfaces (BCIs) are devices that enable people to communicate via thought alone. Brain signals can be directly translated into messages or commands. Until recently, these devices were used primarily to help people who could not move. However, BCIs are now becoming practical tools for a wide variety of people, in many different situations. What will BCIs in the future be like? Who will use them, and why? This book, written by many of the top BCI researchers and developers, reviews the latest progress in the different components of BCIs. Chapters also discuss practical issues in an emerging BCI enabled community. The book is intended both for professionals and for interested laypeople who are not experts in BCI research.
Rapidly growing knowledge in systems neuroscience may contribute to expand the range of activities in persons with disabilities, but in its practical application, cooperation between experts in different research fields is necessary. In this conference, the guest speakers and audiences will be from wide range of research fields; e.g., systems-neuroscience, neurology, engineering, psychology, and the attendees will discuss the possibilities.
This concise, user-oriented and up-to-date desk reference offers a broad introduction to the fascinating world of medical technology, fully considering today’s progress and further development in all relevant fields. The Springer Handbook of Medical Technology is a systemized and well-structured guideline which distinguishes itself through simplification and condensation of complex facts. This book is an indispensable resource for professionals working directly or indirectly with medical systems and appliances every day. It is also meant for graduate and post graduate students in hospital management, medical engineering, and medical physics.
Neural engineering is a discipline that uses engineering techniques to understand, repair, replace, enhance, or treat diseases of neural systems. Currently, no book other than this one covers this broad range of topics within motor rehabilitation technology. With a focus on cutting edge technology, it describes state-of-the-art methods within this field, from brain-computer interfaces to spinal and cortical plasticity. Touching on electrode design, signal processing, the neurophysiology of movement, robotics, and much more, this innovative volume collects the latest information for a wide range of readers working in biomedical engineering.
A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.
We have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep 1 abreast of the rest of the world in scientific matters. We must maintain our leadership. President Harry Truman spoke those words in 1950, in the aftermath of World War II and in the midst of the Cold War. Indeed, the scientific and engineering leadership of the United States and its allies in the twentieth century played key roles in the successful outcomes of both World War II and the Cold War, sparing the world the twin horrors of fascism and totalitarian communism, and fueling the economic prosperity that followed. ...
This book constitutes the proceedings of the 8th International Conference on the Foundations of Augmented Cognition, AC 2014, held as part of HCI International 2014 which took place in Heraklion, Crete, Greece, in June 2014 and incorporated 14 conferences which similar thematic areas. HCII 2014 received a total of 4766 submissions, of which 1476 papers and 220 posters were accepted for publication after a careful reviewing process. These papers address the latest research and development efforts and highlight the human aspects of design and use of computing systems. The papers thoroughly cover the entire field of Human-Computer Interaction, addressing major advances in knowledge and effective use of computers in a variety of application areas. The 34 papers presented in the AC 2014 proceedings are organized in topical sections named: emotional and cognitive issues in augmented cognition; machine learning for augmented cognition; augmented cognition for learning and training and augmented cognition for health and rehabilitation.
Welcome to the Proceedings of ICCHP 2010! We were proud to welcome participants from more than 40 countries from all over the world to this year’s ICCHP. Since the late 1980s, it has been ICCHP’s mission to support and reflect development in the field of “Assistive Technologies,” eAccessibility and eInclusion. With a focus on scientific quality, ICCHP has become an important reference in our field. The 2010 conference and this collection of papers once again fulfilled this mission. The International Programme Committee, comprising 106 experts from all over the world, selected 147 full and 44 short papers out of 328 abstracts submitted to ICCHP. This acceptance ratio of about half of the submissions demonstrates our strict pursuit of scientific quality both of the programme and in particular of the proceedings in your hands. An impressive number of experts agreed to organize “Special Thematic Sessions” (STS) for ICCHP 2010. These STS help to bring the meeting into sharper focus in several key areas. In turn, this deeper level of focus helps to collate a state of the art and mainstream technical, social, cultural and political developments.
Brain-Computer Interface (BCI) systems allow communication based on a direct electronic interface which conveys messages and commands directly from the human brain to a computer. In the recent years, attention to this new area of research and the number of publications discussing different paradigms, methods, signal processing algorithms, and applications have been increased dramatically. The objective of this book is to discuss recent progress and future prospects of BCI systems. The topics discussed in this book are: important issues concerning end-users; approaches to interconnect a BCI system with one or more applications; several advanced signal processing methods (i.e., adaptive network fuzzy inference systems, Bayesian sequential learning, fractal features and neural networks, autoregressive models of wavelet bases, hidden Markov models, equivalent current dipole source localization, and independent component analysis); review of hybrid and wireless techniques used in BCI systems; and applications of BCI systems in epilepsy treatment and emotion detections.
Brain Computer Interface (BCI) technology provides a direct electronic interface and can convey messages and commands directly from the human brain to a computer. BCI technology involves monitoring conscious brain electrical activity via electroencephalogram (EEG) signals and detecting characteristics of EEG patterns via digital signal processing algorithms that the user generates to communicate. It has the potential to enable the physically disabled to perform many activities, thus improving their quality of life and productivity, allowing them more independence and reducing social costs. The challenge with BCI, however, is to extract the relevant patterns from the EEG signals produced by the brain each second. Recently, there has been a great progress in the development of novel paradigms for EEG signal recording, advanced methods for processing them, new applications for BCI systems and complete software and hardware packages used for BCI applications. In this book a few recent advances in these areas are discussed.