You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Brain-computer interfaces (BCIs) are devices that enable people to communicate via thought alone. Brain signals can be directly translated into messages or commands. Until recently, these devices were used primarily to help people who could not move. However, BCIs are now becoming practical tools for a wide variety of people, in many different situations. What will BCIs in the future be like? Who will use them, and why? This book, written by many of the top BCI researchers and developers, reviews the latest progress in the different components of BCIs. Chapters also discuss practical issues in an emerging BCI enabled community. The book is intended both for professionals and for interested laypeople who are not experts in BCI research.
Rapidly growing knowledge in systems neuroscience may contribute to expand the range of activities in persons with disabilities, but in its practical application, cooperation between experts in different research fields is necessary. In this conference, the guest speakers and audiences will be from wide range of research fields; e.g., systems-neuroscience, neurology, engineering, psychology, and the attendees will discuss the possibilities.
Neural engineering is a discipline that uses engineering techniques to understand, repair, replace, enhance, or treat diseases of neural systems. Currently, no book other than this one covers this broad range of topics within motor rehabilitation technology. With a focus on cutting edge technology, it describes state-of-the-art methods within this field, from brain-computer interfaces to spinal and cortical plasticity. Touching on electrode design, signal processing, the neurophysiology of movement, robotics, and much more, this innovative volume collects the latest information for a wide range of readers working in biomedical engineering.
This concise, user-oriented and up-to-date desk reference offers a broad introduction to the fascinating world of medical technology, fully considering today’s progress and further development in all relevant fields. The Springer Handbook of Medical Technology is a systemized and well-structured guideline which distinguishes itself through simplification and condensation of complex facts. This book is an indispensable resource for professionals working directly or indirectly with medical systems and appliances every day. It is also meant for graduate and post graduate students in hospital management, medical engineering, and medical physics.
A brain-computer interface (BCI) establishes a direct output channel between the human brain and external devices. BCIs infer user intent via direct measures of brain activity and thus enable communication and control without movement. This book, authored by experts in the field, provides an accessible introduction to the neurophysiological and signal-processing background required for BCI, presents state-of-the-art non-invasive and invasive approaches, gives an overview of current hardware and software solutions, and reviews the most interesting as well as new, emerging BCI applications. The book is intended not only for students and young researchers, but also for newcomers and other readers from diverse backgrounds keen to learn about this vital scientific endeavour.
Welcome to the Proceedings of ICCHP 2010! We were proud to welcome participants from more than 40 countries from all over the world to this year’s ICCHP. Since the late 1980s, it has been ICCHP’s mission to support and reflect development in the field of “Assistive Technologies,” eAccessibility and eInclusion. With a focus on scientific quality, ICCHP has become an important reference in our field. The 2010 conference and this collection of papers once again fulfilled this mission. The International Programme Committee, comprising 106 experts from all over the world, selected 147 full and 44 short papers out of 328 abstracts submitted to ICCHP. This acceptance ratio of about half of the submissions demonstrates our strict pursuit of scientific quality both of the programme and in particular of the proceedings in your hands. An impressive number of experts agreed to organize “Special Thematic Sessions” (STS) for ICCHP 2010. These STS help to bring the meeting into sharper focus in several key areas. In turn, this deeper level of focus helps to collate a state of the art and mainstream technical, social, cultural and political developments.
Welcome to the Proceedings of ICCHP 2010! We were proud to welcome participants from more than 40 countries from all over the world to this year’s ICCHP. Since the late 1980s, it has been ICCHP’s mission to support and reflect development in the field of “Assistive Technologies,” eAccessibility and eInclusion. With a focus on scientific quality, ICCHP has become an important reference in our field. The 2010 conference and this collection of papers once again fulfilled this mission. The International Programme Committee, comprising 106 experts from all over the world, selected 147 full and 44 short papers out of 328 abstracts submitted to ICCHP. This acceptance ratio of about half of the submissions demonstrates our strict pursuit of scientific quality both of the programme and in particular of the proceedings in your hands. An impressive number of experts agreed to organize “Special Thematic Sessions” (STS) for ICCHP 2010. These STS help to bring the meeting into sharper focus in several key areas. In turn, this deeper level of focus helps to collate a state of the art and mainstream technical, social, cultural and political developments.
The impaired brain has often been difficult to rehabilitate owing to limited knowledge of the brain system. Recently, advanced imaging techniques such as fMRI and MEG have allowed researchers to investigate spatiotemporal dynamics in the living human brain. Consequently, knowledge in systems neuroscience is now rapidly growing. Advanced techniques have found practical application by providing new prosthetics, such as brain–machine interfaces, expanding the range of activities of persons with disabilities, or the elderly. The book’s chapters are authored by researchers from various research fields such as systems neuroscience, rehabilitation, neurology, psychology and engineering. The book explores the latest advancements in neurorehabilitation, plasticity and brain–machine interfaces among others and constitutes a solid foundation for researchers who aim to contribute to the science of brain function disabilities and ultimately to the well-being of patients and the elderly worldwide.
Here is the first of a two-volume set (LNCS 8021 and 8022) that constitutes the refereed proceedings of the 5th International Conference on Virtual, Augmented and Mixed Reality, VAMR 2013, held as part of the 15th International Conference on Human-Computer Interaction, HCII 2013, held in Las Vegas, USA in July 2013, jointly with 12 other thematically similar conferences. The total of 1666 papers and 303 posters presented at the HCII 2013 conferences was carefully reviewed and selected from 5210 submissions. These papers address the latest research and development efforts and highlight the human aspects of design and use of computing systems. The papers accepted for presentation thoroughly co...
Brain-Computer Interface (BCI) systems allow communication based on a direct electronic interface which conveys messages and commands directly from the human brain to a computer. In the recent years, attention to this new area of research and the number of publications discussing different paradigms, methods, signal processing algorithms, and applications have been increased dramatically. The objective of this book is to discuss recent progress and future prospects of BCI systems. The topics discussed in this book are: important issues concerning end-users; approaches to interconnect a BCI system with one or more applications; several advanced signal processing methods (i.e., adaptive network fuzzy inference systems, Bayesian sequential learning, fractal features and neural networks, autoregressive models of wavelet bases, hidden Markov models, equivalent current dipole source localization, and independent component analysis); review of hybrid and wireless techniques used in BCI systems; and applications of BCI systems in epilepsy treatment and emotion detections.