You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains contributions presented at the Active Flow Control 2006 conference, held September 2006, at the Technische Universität Berlin, Germany. It contains a well balanced combination of theoretical and experimental state-of-the-art results of Active Flow Control. Coverage combines new developments in actuator technology, sensing, robust and optimal open- and closed-loop control and model reduction for control.
This book presents 13 peer-reviewed papers as written results from the 2005 workshop "Topology-Based Methods in Visualization" that was initiated to enable additional stimulation in this field. It contains a survey of the state-of-the-art, as well original work by leading experts that has not been published before, spanning both theory and applications. It captures key concepts and novel ideas and serves as an overview of current trends in its subject.
With a lot of recent developments in the field, this much-needed book has come at just the right time. It covers a variety of topics related to preserving and enhancing shape information at a geometric level. The contributors also cover subjects that are relevant to effectively capturing the structure of a shape by identifying relevant shape components and their mutual relationships.
The book concerns theoretical and numerical aspects of systems of conservation laws, which can be considered as a mathematical model for the flows of inviscid compressible fluids. Five leading specialists in this area give an overview of the recent results, which include: kinetic methods, non-classical shock waves, viscosity and relaxation methods, a-posteriori error estimates, numerical schemes of higher order on unstructured grids in 3-D, preconditioning and symmetrization of the Euler and Navier-Stokes equations. This book will prove to be very useful for scientists working in mathematics, computational fluid mechanics, aerodynamics and astrophysics, as well as for graduate students, who want to learn about new developments in this area.
This book presents efficient visualization techniques, a prerequisite for the interactive exploration of complex data sets. High performance is demonstrated as a process of devising algorithms for the fast graphics processing units (GPUs) of modern graphics hardware. Coverage includes parallelization on cluster computers with several GPUs, adaptive rendering methods, and non-photorealistic rendering techniques for visualization.
Traditionally, say 15 years ago, three-dimensional image analysis (aka computer vi sion) and three-dimensional image synthesis (aka computer graphics) were separate fields. Rarely were expert
The Visualization Handbook provides an overview of the field of visualization by presenting the basic concepts, providing a snapshot of current visualization software systems, and examining research topics that are advancing the field. This text is intended for a broad audience, including not only the visualization expert seeking advanced methods to solve a particular problem, but also the novice looking for general background information on visualization topics. The largest collection of state-of-the-art visualization research yet gathered in a single volume, this book includes articles by a "who's who of international scientific visualization researchers covering every aspect of the discip...
This 14th volume in the PUILS series presents up-to-date reviews of advances in Ultrafast Intense Laser Science, an interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the rapid developments in ultrafast laser technologies. Each chapter begins with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and appeal of the respective subject matter; this is followed by reports on cutting-edge discoveries. This volume covers a broad range of topics from this interdisciplinary field, e.g. atoms and molecules interacting in intense laser fields, laser-induced filamentation, high-order harmonics generation, and high-intensity lasers and their applications.
Visualization in Medicine is the first book on visualization and its application to problems in medical diagnosis, education, and treatment. The book describes the algorithms, the applications and their validation (how reliable are the results?), and the clinical evaluation of the applications (are the techniques useful?). It discusses visualization techniques from research literature as well as the compromises required to solve practical clinical problems. The book covers image acquisition, image analysis, and interaction techniques designed to explore and analyze the data. The final chapter shows how visualization is used for planning liver surgery, one of the most demanding surgical disciplines. The book is based on several years of the authors' teaching and research experience. Both authors have initiated and lead a variety of interdisciplinary projects involving computer scientists and medical doctors, primarily radiologists and surgeons.* A core field of visualization and graphics missing a dedicated book until now* Written by pioneers in the field and illustrated in full color* Covers theory as well as practice
The PUILS series delivers reviews of progress in Ultrafast Intense Laser Science, an emerging field. This sixth volume covers a broad range of topics from this interdisciplinary research field to provide a state-of-the-art report of short time Laser physics.