You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Banach algebras combine algebraic and analytical aspects: it is the interplay of these structures that gives the subject its fascination. This volume expounds the general theory of Banach algebras, and shows how their topology is often determined by their algebraic structure: the central questions ask when homomorphisms and derivations from Banach algebras are automatically continuous, and seek canonical forms for these maps. The book synthesizes work over the last 20 years, and givesa definitive account; there are many new and unpublished results. The book describes many specific classes of Banach algebras, including function algebras, group algebras, algebras of operators, C*-algebras, and radical Banach algebras; it is a compendium of results on these examples. The subject interweaves algebra, functional analysis, and complex analysis, and has a dash of set theory and logic; the background in all these areas is fully explained. This volume is essential reading for anyone interested in any aspect of this vast subject.
Table of contents
A timely graduate level text in an active field covering functional analysis, with an emphasis on Banach algebras.
Modern local spectral theory is built on the classical spectral theorem, a fundamental result in single-operator theory and Hilbert spaces. This book provides an in-depth introduction to the natural expansion of this fascinating topic of Banach space operator theory, whose pioneers include Dunford, Bishop, Foias, and others. Assuming only modest prerequisites of its readership, it gives complete coverage of the field, including the fundamental recent work by Albrecht and Eschmeier which provides the full duality theory for Banach space operators. It is highlighted by many characterizations of decomposable operators, and of other related, important classes of operators, as well as an in-depth...
This volume contains the proceedings of the Conference on Complex Analysis and Spectral Theory, in celebration of Thomas Ransford's 60th birthday, held from May 21–25, 2018, at Laval University, Québec, Canada. Spectral theory is the branch of mathematics devoted to the study of matrices and their eigenvalues, as well as their infinite-dimensional counterparts, linear operators and their spectra. Spectral theory is ubiquitous in science and engineering because so many physical phenomena, being essentially linear in nature, can be modelled using linear operators. On the other hand, complex analysis is the calculus of functions of a complex variable. They are widely used in mathematics, phy...
This volume contains the proceedings of the Summer School on Identification and Control: some challenges, held from June 18–20, 2019, in Monastir, Tunisia. The articles cover new developments in control theory and inverse problems. First, the problem of Calderón, which consists of determining a conductivity appearing in an elliptic equation from excitation and measurements on a part of the boundary of the domain, is studied. Second, an introduction to the mathematical analysis of inverse spectral problems of Borg-Levinson type is presented. Third, the control of multi-component systems of wave equations, focusing on the notion of simultaneous control (using the same control scheme in all components of the system at hand) and indirect control (using a single control for a system consisting of two components), is presented. Last, the study of the cost of control for parabolic systems, the finite time stabilization of hyperbolic control systems by boundary feedback laws, and image reconstruction by data assimilation are addressed.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.
This self-contained text provides an introduction to a wide range of representation theorems and provides a complete description of the representation theorems with direct proofs for both classes of Hardy spaces: Hardy spaces of the open unit disc and Hardy spaces of the upper half plane.