You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In 1942, Lt. Herman H. Goldstine, a former mathematics professor, was stationed at the Moore School of Electrical Engineering at the University of Pennsylvania. It was there that he assisted in the creation of the ENIAC, the first electronic digital computer. The ENIAC was operational in 1945, but plans for a new computer were already underway. The principal source of ideas for the new computer was John von Neumann, who became Goldstine's chief collaborator. Together they developed EDVAC, successor to ENIAC. After World War II, at the Institute for Advanced Study, they built what was to become the prototype of the present-day computer. Herman Goldstine writes as both historian and scientist in this first examination of the development of computing machinery, from the seventeenth century through the early 1950s. His personal involvement lends a special authenticity to his narrative, as he sprinkles anecdotes and stories liberally through his text.
The calculus of variations is a subject whose beginning can be precisely dated. It might be said to begin at the moment that Euler coined the name calculus of variations but this is, of course, not the true moment of inception of the subject. It would not have been unreasonable if I had gone back to the set of isoperimetric problems considered by Greek mathemati cians such as Zenodorus (c. 200 B. C. ) and preserved by Pappus (c. 300 A. D. ). I have not done this since these problems were solved by geometric means. Instead I have arbitrarily chosen to begin with Fermat's elegant principle of least time. He used this principle in 1662 to show how a light ray was refracted at the interface between two optical media of different densities. This analysis of Fermat seems to me especially appropriate as a starting point: He used the methods of the calculus to minimize the time of passage cif a light ray through the two media, and his method was adapted by John Bernoulli to solve the brachystochrone problem. There have been several other histories of the subject, but they are now hopelessly archaic. One by Robert Woodhouse appeared in 1810 and another by Isaac Todhunter in 1861.
In this book I have attempted to trace the development of numerical analysis during the period in which the foundations of the modern theory were being laid. To do this I have had to exercise a certain amount of selectivity in choosing and in rejecting both authors and papers. I have rather arbitrarily chosen, in the main, the most famous mathematicians of the period in question and have concentrated on their major works in numerical analysis at the expense, perhaps, of other lesser known but capable analysts. This selectivity results from the need to choose from a large body of literature, and from my feeling that almost by definition the great masters of mathematics were the ones responsib...
My interest in the history of digital computers became an active one when I had the fortune to come across the almost entirely forgotten work of PERCY LUDGATE, who designed a mechanical program-controlled computer in Ireland in the early I ':ICC's. I undertook an investigation of his life and work, during which I began to realise that a large number of early developments, which we can now see as culminating in the modern digital computer, had been most undeservedly forgotten. Hopefully, historians of science, some of whom are now taking up the subject of the development of the computer and accumulating valuable data, particularly about the more recent events from the people concerned, will before too long provide us with comprehensive analytical accounts of the invention of the computer. The present book merely aims to bring together some of the more important and interesting written source material for such a history of computers. (Where necessary, papers have been translated into English, but every attempt has been made to retain the flavour of the original, and to avoid possibly misleading use of modern computing terminology.
Advances in Nuclear Science and Technology, Volume 9 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants. Organized into five chapters, this volume begins with an overview of the possible consequences of a large-scale release of radioactivity from a nuclear reactor in the event of a serious accident. This text then discusses the extension of conventional perturbation techniques to multidimensional systems and to high-order approximations of the Boltzmann equation. Other chapters consider details of probability treatment of the conventionally assumed loss-of-pressure accident to a modern gas-cooled reactor. This book discusses as well details of reliability analysis of a typical electromechanical protective system. The final chapter deals with the computer applications and the need for standardization as both computing and nuclear energy shifted from research and development to industry status. This book is a valuable resource for reactor physicists, engineers, scientists, and research workers.
Originally pub. in 1973; reprinted in 1994. Presents tables giving the dates of all new and full moons during an historical era when these data were of considerable interest and importance. The longitudes of the moon at each of these times is also given, as is a consecutive enumeration of the conjunctions and a similar one of the oppositions. All dates are reckoned in the Julian calendar. These dates and times are calculated for an observer in Babylon, or equivalently Baghdad, since this location is fairly centrally located for the historians of the period. The time used is civil time and is based on a 24-hour clock with its origin at midnight. Since this vol. may be considered as a suppl. to Tuckerman's tables, all fundamental astronomical elements have been taken from them.
After three decades since the first nearly complete edition of John von Neumann's papers, this book is a valuable selection of those papers and excerpts of his books that are most characteristic of his activity, and reveal that of his continuous influence.The results receiving the 1994 Nobel Prizes in economy deeply rooted in Neumann's game theory are only minor traces of his exceptionally broad spectrum of creativity and stimulation.The book is organized by the specific subjects-quantum mechanics, ergodic theory, operator algebra, hydrodynamics, economics, computers, science and society. In addition, one paper which was written in German will be translated and published in English for the first time.The sections are introduced by short explanatory notes with an emphasis on recent developments based on von Neumann's contributions. An overall picture is provided by Ulam's, one of his most intimate partners in thinking, 1958 memorial lecture. Facsimilae and translations of some of his personal letters and a newly completed bibliography based on von Neumann's own careful compilation are added.
Today, computers fulfil a dazzling array of roles, a flexibility resulting from the great range of programs that can be run on them. A Science of Operations examines the history of what we now call programming, defined not simply as computer programming, but more broadly as the definition of the steps involved in computations and other information-processing activities. This unique perspective highlights how the history of programming is distinct from the history of the computer, despite the close relationship between the two in the 20th century. The book also discusses how the development of programming languages is related to disparate fields which attempted to give a mechanical account of...