You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Many trace gases are exchanged between the atmosphere and the biosphere. Although much research has been published on the photosynthetic exchanges of carbon dioxide, oxygen, and water vapor, this book focuses on the importance of biogenic trace gases on atmosphere chemistry and ecosystem stability. Included are methane and its effect on the radiative properties of the atmosphere, hydrocarbons (isoprene and monoterpenes), and their role in the production of ozone and carbon monoxide. Also covered are sulfur and nitrogen gases, both of which can lead to ecosystem acidification. The biochemistry and physiology of production of these and other gases are investigated.Plant physiologists, ecologists, and atmospheric chemists and modelers will benefit from this book.
After green revolution was launched in India, substantial increase in the production of food-grains was achieved through the use of improved crop varieties and higher levels of inputs like fertilizers water and plant protection chemicals. This made the revolution possible but it has limitations of higher costs and of causing damage to the environment specially when inputs are not used efficiently and judiciously. A decline of yields are being reported from the green revolution belts of India, in spite of liberal application of fertilizers and other inputs. The environmental problems are now becoming real problems of the developing countries as well as developing world. This disturbing trend ...
The Handbook of Soil Science provides a resource rich in data that gives professional soil scientists, agronomists, engineers, ecologists, biologists, naturalists, and their students a handy reference about the discipline of soil science. This handbook serves professionals seeking specific, factual reference information. Each subsection includes a description of concepts and theories; definitions; approaches; methodologies and procedures; tabular data; figures; and extensive references.
Methane plays many important roles in the earth's environment. It is a potent "greenhouse gas" that warms the earth; controls the oxidizing capacity of the atmosphere (OH) indirectly affecting the cycles and abundances of many atmospheric trace gases; provides water vapor to the stratosphere; scavenges chlorine atoms from the stratosphere, terminating the catalytic ozone destruction by chlorine atoms, including the chlorine released from the man-made chlorofluorocarbons; produces ozone, CO, and CO2 in the troposphere; and it is an index of life on earth and so is present in greater quantities during warm interglacial epochs and dwindles to low levels during the cold of ice ages. By all measures, methane is the second only to CO2 in causing future global warming. The book presents a comprehensive account of the current understanding of atmospheric methane, and it is an end point for summarizing more than a decade of intensive research on the global sources, sinks, concentrations, and environmental role of methane.
The NATO Advanced Research Workshop (ARW) on "Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants" intended to provide a forum to scientists from academia, industry, and govemment for discussing and critically assessing recent advances in the field of xenobiotic metabolism in plants and for identifying new directions for future research. Plants function in a chemical environment made up of nutrients and xenobiotics. Xenobiotics (foreign chemicals) are natural or synthetic compounds that can not be utilized by plants for energy-yielding metabolism. Plants may be exposed to xenobiotics either deliberately, due to their use as pesticides or accidentally, from industrial, agricultu...
Efforts to increase efficient nutrient use by crops are of growing importance as the global demand for food, fibre and fuel increases and competition for resources intensifies. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops provides both a timely summary of the latest advances in the field as well as anticipating directions for future research. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops bridges the gap between agronomic practice and molecular biology by linking underpinning molecular mechanisms to the physiological and agronomic aspects of crop yield. These chapters provide an understanding of molecular and physiological mechanisms th...
Presents the latest research on sulfur in temperate agricultural and forest ecosystems-integrating experimental findings with models of spatial scales from the cellular to the landscape level. Provides a general overview of sulfur in terrestrial ecosystems.
This is the second volume in the series Nutrients in Ecosystems. Sulphur as an essential plant nutrient has received little attention. This is explained by the facts that sulphur was obviously in sufficient supply from the atmosphere, from soil and as a by-product in mineral fertilizers. Increases in the yield potential and thus in the nutrient requirement of modern crops, however, as well as remarkable changes in SO2 emissions by private households, power stations and industry, associated with legislative measures to reduce air and water pollution, have altered the situation to a large extent. In particular the public concerns about forest decline and pollution-induced climatic changes have...
In the present scenario, stresses induced due to global environmental change have indeed become a focal point of researches and study programmes worldwide. Stress caused to plant life has an important consequence to both, vegetation as such and all other global cycles which sustain this `living earth'. Unlike other already existing works this volume elucidates the plant-pollutant relationship in a manner that defines not only the drastic effects of pollutants on plants but concomitantly highlights the hitherto less focused areas namely phytoindication, phytoremediation and stress tolerant bioaesthetic development, thus concentrating more on plant than pollutant. The book would help understand the magnitude of environmental stress in the coming years and may play a formative role in defining future research and policy areas along with providing impetus to development of newer eco-technologies. The book shall interest both students and researchers of environmental sciences, ecology, forestry and related disciplines as well as persons and organisations engaged in environmental management and eco-conservation.
Phosphate is an essential mineral to all plants, and its availability in soils is an increasing challenge for agriculture. Phosphate is abundant in soils but its biological availability is often low due to the complexes that it forms with soil minerals and compounds. The biological availability of Phosphate is further reduced in acidic soils, which represent approximately 40% of earth’s arable agricultural lands. Agricultural systems compensate Phosphate deficiency with fertilizers coming from the mining of rock phosphate, which is estimated to exhaust within the next 50 years. For these reasons, Phosphate limitations in natural and agricultural ecosystems is going to become a global problem, and we urgently need to better understand how plants respond to Phosphate deficiency.