You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book focuses on mixed crystals formed by molecular substances. The emphasis lies on the elucidation of the structural and thermodynamic properties of two-component systems. Thanks to the fact that the research efforts have been directed to a number of families of chemically coherent substances, rather than to a collection of isolated systems, the knowledge of mixed crystals has substantially increased. This is reflected by the discovery of several empirical relationships between thermodynamic properties, crystallographic properties, and also between thermodynamic mixing properties and exothermodynamic parameters, such as the structural mismatch between the components of the binary systems. This book is a benchmark for material scientists and a unique starting point for anyone interested in mixed crystals.
1. Introduction. -- 2. Phase Changes in Pure Component Systems: Liquids and Gases. -- 3. Phase Changes in Pure Component Systems: Liquids and Solids. -- 4. Phase Changes in Pure Component Systems: Solid and Solid. -- 5. Vapour-Liquid Equilibrium at Low Pressure. -- 6. Vapour-Liquid Equilibrium at High Pressure. -- 7. Low Pressure Gas Solubility in Liquids. -- 8. Liquid-Liquid Equilibrium. -- 9. Condensed Phases of Organic Materials: Solid-Liquid and Solid-Solid Equilibrium. -- 10. Condensed Phases of Inorganic Materials: Metallic Systems. -- 11. Condensed Phases of Inorganic Materials: Ceramic Systems. -- 12. Condensed Phases of Inorganic Materials: Molten Salts. -- 13. Measurement of Limiting Activity Coefficients Using Non-Analytical Tools. -- 14. Measurement of Limiting Activity Coefficients Using Analytical Tools. -- 15. Measurement of Interfacial Tension. -- 16. Critical Parameters.
Properties of chemical compounds and their mixtures are needed in almost every aspect of process and product design. When the use of experimental data is not possible, one of the most widely used options in the use of property estimation models. Computer Aided Property Estimation for Process and Product Design provides a presentation of the most suitable property estimation models available today as well as guidelines on how to select an appropriate model. Problems that users are faced with, such as: which models to use and what their accuracy is, are addressed using a systematical approach to property estimation. The volume includes contributions from leading experts from academia and industry. A wide spectrum of properties and phase equilibria types is covered, making it indispensable for research, development and educational purposes.* This book presents the latest developments in computational modelling for thermodynamic property estimation.* It combines theory with practice and includes illustrative examples of software applications. * The questions users of property models are faced with are addressed comprehensively.
Philosophy of Chemistry investigates the foundational concepts and methods of chemistry, the science of the nature of substances and their transformations. This groundbreaking collection, the most thorough treatment of the philosophy of chemistry ever published, brings together philosophers, scientists and historians to map out the central topics in the field. The 33 articles address the history of the philosophy of chemistry and the philosophical importance of some central figures in the history of chemistry; the nature of chemical substances; central chemical concepts and methods, including the chemical bond, the periodic table and reaction mechanisms; and chemistry's relationship to other disciplines such as physics, molecular biology, pharmacy and chemical engineering. This volume serves as a detailed introduction for those new to the field as well as a rich source of new insights and potential research agendas for those already engaged with the philosophy of chemistry. Provides a bridge between philosophy and current scientific findings Encourages multi-disciplinary dialogue Covers theory and applications
In this fully updated and revised second edition the authors provide the newcomer and the experienced practitioner with a balanced and comprehensive insight into all important DSC methods, including a sound presentation of the theoretical basis of DSC and TMDSC measurements. Emphasis is layed on instrumentation, the underlying measurement principles, metrologically correct calibrations, factors influencing the measurement process, and on the exact interpretation of the results. The information given enables the research scientist, the analyst and experienced laboratory staff to apply DSC methods successfully and to measure respective properties correctly.
Comprehensive Nuclear Materials, Five Volume Set discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials. The work addresses the full panorama of contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds' leading scientists and engineers. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environment Fully integrated with F-elements.net, a proprietary database containing useful cross-referenced property data on the lanthanides and actinides Details contemporary developments in numerical simulation, modelling, experimentation, and computational analysis, for effective implementation in labs and plants
Volume 323 of Methods in Enzymology is dedicated to the energetics of biological macromolecules. Understanding the molecular mechanisms underlying a biological process requires detailed knowledge of the structural relationships within the system and an equally detailed understanding of the energetic driving forces that control the structural interactions. This volume presents modern thermodynamic techniques currently being utilized to study the energetic driving forces in biological systems. It will be a useful reference source and textbook for scientists and students whose goal is to understand the energetic relationships between macromoleculer structures and biological functions. This volume supplements Volumes 259 and Volume 295 of Methods in Enzymology.Key Features* Probing Stability of Helical Transmembrane Proteins* Energetics of Vinca Alkaloid Interactions with Tubulin* Deriving Complex Ligand Binding Formulas* Mathematical Modeling of Cooperative Interactions in Hemoglobin* Analysis of Interactions of Regulatory Protein TyrR with DNA* Parsing Free Energy of Drug-DNA Interactions* Use of Fluorescence as Thermodynamics Tool
From the Author's Preface There is a growing demand for ultrapure organic compounds such as fine chemicals, pharmaceuticals, and basic materials for use in the polymer industry. . . . In quite a number of cases, it is difficult or impossible to manufacture ultrapure organics efficiently using conventional separation techniques such as distillation. Moreover, conventional techniques usually require large amounts of energy. To improve the purification efficiency of organics, special techniques based on crystallization from the melt have been developed. Melt crystallization meets industry's need for a highly selective separation process for organic compounds which operates at low enough tempera...
The Second Volume of “Equilibrium between Phases of Matter”, when compared with the First Volume, by H.A.J. Oonk and M.T. Calvet, published in 2008, amounts to an extension of subjects, and a deepening of understanding. In the first three sections of the text an extension is given of the theory on isobaric binary systems. The fourth section gives an account of the thermodynamic analyses of four isobaric binary key systems, highlighting the power of empirical, (exo)thermodynamic correlations. The fifth section is devoted to the thermodynamic description of ternary systems. The last three sections concentrate on the properties of materials, and the phase behaviour of systems under the cond...
The first volume of this work is organized in three levels, so that the portion and importance of thermodynamics and mathematics increase from level to level. The ground level shows that basics of phase equilibria can be understood without thermodynamics provided the concept of chemical potential is introduced early. The intermediate level introduces thermodynamics, culminating in the Gibbs energy as the arbiter for equilibrium. At the third level the accent is on binary systems, where one or more phases are solutions of the components. Priority is given throughout to the thermodynamic assessment of experimental data. 200 exercises are included with solutions.