You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In his paper Theory of Communication [Gab46], D. Gabor proposed the use of a family of functions obtained from one Gaussian by time-and frequency shifts. Each of these is well concentrated in time and frequency; together they are meant to constitute a complete collection of building blocks into which more complicated time-depending functions can be decomposed. The application to communication proposed by Gabor was to send the coeffi cients of the decomposition into this family of a signal, rather than the signal itself. This remained a proposal-as far as I know there were no seri ous attempts to implement it for communication purposes in practice, and in fact, at the critical time-frequency ...
In Western Civilization Mathematics and Music have a long and interesting history in common, with several interactions, traditionally associated with the name of Pythagoras but also with a significant number of other mathematicians, like Leibniz, for instance. Mathematical models can be found for almost all levels of musical activities from composition to sound production by traditional instruments or by digital means. Modern music theory has been incorporating more and more mathematical content during the last decades. This book offers a journey into recent work relating music and mathematics. It contains a large variety of articles, covering the historical aspects, the influence of logic and mathematical thought in composition, perception and understanding of music and the computational aspects of musical sound processing. The authors illustrate the rich and deep interactions that exist between Mathematics and Music.
This text provides an overview of recent developments in Gabor analysis. Scientists in various disciplines related to the subject treat a range of topics from covering theory to numerics, as well as applications of Gabor analysis.
This volume aims at surveying and exposing the main ideas and principles accumulated in a number of theories of Mathematical Analysis. The underlying methodological principle is to develop a unified approach to various kinds of problems. In the papers presented, outstanding research scientists discuss the present state of the art and the broad spectrum of topics in the theory.
This book is based on the conference on Function Spaces held at Southern Illinois University at Edwardsville, in April, 1990. It is designed to cover a wide range of topics, including spaces of analytic functions, isometries of function spaces, geometry of Banach spaces, and Banach algebras.
The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.
Gabor and wavelet analyses have found widespread applications in signal analysis, image processing and many other information-related areas. Both deliver representations that are simultaneously local in time and in frequency. Due to their significance and success in practical applications, they formed some of the core topics of the program OC Mathematics and Computation in Imaging Science and Information ProcessingOCO, which was held at the Institute for Mathematical Sciences, National University of Singapore, from July to December 2003 and in August 2004. As part of the program, tutorial lectures were conducted by international experts, and they covered a wide spectrum of topics in mathemat...
This contributed volume explores the connection between the theoretical aspects of harmonic analysis and the construction of advanced multiscale representations that have emerged in signal and image processing. It highlights some of the most promising mathematical developments in harmonic analysis in the last decade brought about by the interplay among different areas of abstract and applied mathematics. This intertwining of ideas is considered starting from the theory of unitary group representations and leading to the construction of very efficient schemes for the analysis of multidimensional data. After an introductory chapter surveying the scientific significance of classical and more ad...
Time-frequency analysis is a modern branch of harmonic analysis. It com prises all those parts of mathematics and its applications that use the struc ture of translations and modulations (or time-frequency shifts) for the anal ysis of functions and operators. Time-frequency analysis is a form of local Fourier analysis that treats time and frequency simultaneously and sym metrically. My goal is a systematic exposition of the foundations of time-frequency analysis, whence the title of the book. The topics range from the elemen tary theory of the short-time Fourier transform and classical results about the Wigner distribution via the recent theory of Gabor frames to quantita tive methods in tim...
The International Conference of Computational Harmonic Analysis, held in Hong Kong during the period of June 4 OCo 8, 2001, brought together mathematicians and engineers interested in the computational aspects of harmonic analysis. Plenary speakers include W Dahmen, R Q Jia, P W Jones, K S Lau, S L Lee, S Smale, J Smoller, G Strang, M Vetterlli, and M V Wickerhauser. The central theme was wavelet analysis in the broadest sense, covering time-frequency and time-scale analysis, filter banks, fast numerical computations, spline methods, multiscale algorithms, approximation theory, signal processing, and a great variety of applications.This proceedings volume contains sixteen papers from the lectures given by plenary and invited speakers. These include expository articles surveying various aspects of the twenty-year development of wavelet analysis, and original research papers reflecting the wide range of research topics of current interest."