You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This 15th Edition of the International Conference on Materials Degradation in Light Water Reactors focuses on subject areas critical to the safe and efficient running of nuclear reactor systems through the exchange and discussion of reseach results as well as field operating and management experience.
This two-volume set represents a collection of papers presented at the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. The purpose of this conference series is to foster an exchange of ideas about problems and their remedies in water-cooled nuclear power plants of today and the future. Contributions cover problems facing nickel-based alloys, stainless steels, pressure vessel and piping steels, zirconium alloys, and other alloys in water environments of relevance. Components covered include pressure boundary components, reactor vessels and internals, steam generators, fuel cladding, irradiated components, fuel storage containers, and balance of plant components and systems.
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the propertie...
Corrosion remains one of the key issues affecting the performance and availability of nuclear power plants. Therefore, reliable in-plant corrosion monitoring methods are essential both for the future operation of existing plants and to ensure the safety of future nuclear waste disposal systems. In two parts, this book was stimulated by a workshop organised by EFC Working Party 4 on Nuclear Corrosion and the European Cooperative Group on Corrosion Monitoring of Nuclear Materials (EGC-COMON). The first part deals mainly with research into the detection of stress corrosion crack initiation in nuclear power plant environments (essentially high temperature water at around 300 °C) by various methods, particularly the electrochemical noise technique but also including the electrochemical impedance, acoustic emission and direct current potential drop methods. The second part addresses the goal to develop in-situ techniques and includes examples of the application of electrochemical corrosion potential monitoring. This book will be of particular interest to scientists and engineers concerned with the mitigation of corrosion in nuclear systems.
This collection presents an exchange of ideas among scientists and engineers about the economic and safety concerns surrounding environmentally induced materials problems which lead to nuclear power plant outages. Scientists and engineers concerned with the environmental degradation processes (corrosion, mechanical, and radiation effects) present their latest results on such topics as life extension/relicensing and materials problems associated with spent fuel storage and radioactive waste disposal. This collection will be of interest to utility engineers, reactor vendor engineers, plant architect engineers, researchers concerned with materials degradation, and consultants involved in design, construction, and operation of water reactors.
Nuclear Corrosion: Research, Progress and Challenges, part of the "Green Book series of the EFC, builds upon the foundations of the very first book published in this series in 1989 ("Number 1 - Corrosion in the Nuclear Industry). This newest volume provides an overview on state-of-the-art research in some of the most important areas of nuclear corrosion. Chapters covered include aging phenomena in light water reactors, reprocessing plants, nuclear waste disposal, and supercritical water and liquid metal systems. This book will be a vital resource for both researchers and engineers working within the nuclear field in both academic and industrial environments. - Discusses industry related aspects of materials in nuclear power generation and how these materials react with the environment - Provides comprehensive coverage of the topic as written by noted experts in the field - Includes coverage of nuclear waste corrosion
pt. 1. List of patentees.--pt. 2. Index to subjects of inventions.