Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Prime Numbers and Computer Methods for Factorization
  • Language: en
  • Pages: 483

Prime Numbers and Computer Methods for Factorization

From the original hard cover edition: In the modern age of almost universal computer usage, practically every individual in a technologically developed society has routine access to the most up-to-date cryptographic technology that exists, the so-called RSA public-key cryptosystem. A major component of this system is the factorization of large numbers into their primes. Thus an ancient number-theory concept now plays a crucial role in communication among millions of people who may have little or no knowledge of even elementary mathematics. Hans Riesel’s highly successful first edition of this book has now been enlarged and updated with the goal of satisfying the needs of researchers, stude...

Combinatorial and Additive Number Theory III
  • Language: en
  • Pages: 237

Combinatorial and Additive Number Theory III

Based on talks from the 2017 and 2018 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 17 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, commutative algebra and discrete geometry, and applications of logic and nonstandard analysis to number theory. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.

Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics
  • Language: en
  • Pages: 669

Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics

Proceedings of an International Conference held in Vancouver, B.C., August 1993, to commemorate the 50th anniversary of the founding of the journal Mathematics of Computation. It consisted of a Symposium on Numerical Analysis and a Minisymposium of Computational Number Theory. This proceedings contains 14 invited papers, including two not presented at the conference--an historical essay on integer factorization, and a paper on componentwise perturbation bounds in linear algebra. The invited papers present surveys on the various subdisciplines covered by Mathematics of Computation, in a historical perspective and in a language accessible to a wide audience. The 46 contributed papers address contemporary specialized work. Annotation copyright by Book News, Inc., Portland, OR

Unsolved Problems in Number Theory
  • Language: en
  • Pages: 455

Unsolved Problems in Number Theory

Mathematics is kept alive by the appearance of new, unsolved problems. This book provides a steady supply of easily understood, if not easily solved, problems that can be considered in varying depths by mathematicians at all levels of mathematical maturity. This new edition features lists of references to OEIS, Neal Sloane’s Online Encyclopedia of Integer Sequences, at the end of several of the sections.

Solved and Unsolved Problems in Number Theory
  • Language: en
  • Pages: 321

Solved and Unsolved Problems in Number Theory

The investigation of three problems, perfect numbers, periodic decimals, and Pythagorean numbers, has given rise to much of elementary number theory. In this book, Daniel Shanks, past editor of Mathematics of Computation, shows how each result leads to further results and conjectures. The outcome is a most exciting and unusual treatment. This edition contains a new chapter presenting research done between 1962 and 1978, emphasizing results that were achieved with the help of computers.

History of Nordic Computing 2
  • Language: en
  • Pages: 337

History of Nordic Computing 2

The First Conference on the History of Nordic Computing (HiNC1) was organized in Trondheim, in June 2003. The HiNC1 event focused on the early years of computing, that is the years from the 1940s through the 1960s, although it formally extended to year 1985. In the preface of the proceedings of HiNC1, Janis Bubenko, Jr. , John Impagliazzo, and Arne Sølvberg describe well the peculiarities of early Nordic c- puting [1]. While developing hardware was a necessity for the first professionals, quite soon the computer became an industrial product. Computer scientists, among others, grew increasingly interested in programming and application software. P- gress in these areas from the 1960s to the ...

The Lighter Side of Mathematics: Proceedings of the Eugene Strens Memorial Conference on Recreational Mathematics and Its History
  • Language: en
  • Pages: 379

The Lighter Side of Mathematics: Proceedings of the Eugene Strens Memorial Conference on Recreational Mathematics and Its History

In August of 1986, a special conference on recreational mathematics was held at the University of Calgary to celebrate the founding of the Strens Collection. Leading practitioners of recreational mathematics from around the world gathered in Calgary to share with each other the joy and spirit of play that is to be found in recreational mathematics. It would be difficult to find a better collection of wonderful articles on recreational mathematics by a more distinguished group of authors. If you are interested in tessellations, Escher, tilings, Rubik's cube, pentominoes, games, puzzles, the arbelos, Henry Dudeney, or change ringing, then this book is for you.

The Life of Primes in 37 Episodes
  • Language: en
  • Pages: 329

The Life of Primes in 37 Episodes

This book is about the life of primes. Indeed, once they are defined, primes take on a life of their own and the mysteries surrounding them begin multiplying, just like living cells reproduce themselves, and there seems to be no end to it. This monograph takes the reader on a journey through time, providing an accessible overview of the numerous prime number theory problems that mathematicians have been working on since Euclid. Topics are presented in chronological order as episodes. These include results on the distribution of primes, from the most elementary to the proof of the famous prime number theorem. The book also covers various primality tests and factorisation algorithms. It is the...

Computational Algebra and Number Theory
  • Language: en
  • Pages: 326

Computational Algebra and Number Theory

Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.

Factorization and Primality Testing
  • Language: en
  • Pages: 252

Factorization and Primality Testing

"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psyc...