You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
These proceedings contain 25 papers, which are the peer-reviewed versions of presentations made at the 1st International Workshop on the Quality of Geodetic Observation and Monitoring (QuGOMS’11), held 13 April to 15 April 2011 in Garching, Germany. The papers were drawn from five sessions which reflected the following topic areas: (1) Uncertainty Modeling of Geodetic Data, (2) Theoretical Studies on Combination Strategies and Parameter Estimation, (3) Recursive State-Space Filtering, (4) Sensor Networks and Multi Sensor Systems in Engineering Geodesy, (5) Multi-Mission Approaches With View to Physical Processes in the Earth System.
The Hotine-Marussi Symposium is the core meeting of a “think thank”, a group scientists in the geodetic environment working on theoretical and methodological subjects, while maintaining the foundations of geodesy to the proper level by corresponding to the strong advancements improved by technological development in the field of ICT, electronic computing, space technology, new measurement devices etc. The proceedings of the symposium cover a broad area of arguments which integrate the foundations of geodesy as a science. The common feature of the papers therefore is not on the object, but rather in the high mathematical standards with which subjects are treated.
This work addresses the use of commercial off-the-shelf rotor-based unmanned aerial vehicles (UAVs) to facilitate emergency forces in the rapid structural assessment of a disaster site by means of aerial image-based reconnaissance. It proposes a framework that consists of two parts and relies on the integrated stereo vision sensor and the visual payload camera of the UAV to execute three high-level applications that aim at facilitating first responders in disaster relief missions.
Global Navigation Satellite Systems (GNSS), such as GPS, have become an efficient, reliable and standard tool for a wide range of applications. However, when processing GNSS data, the stochastic model characterising the precision of observations and the correlations between them is usually simplified and incomplete, leading to overly optimistic accuracy estimates. This work extends the stochastic model using signal-to-noise ratio (SNR) measurements and time series analysis of observation residuals. The proposed SNR-based observation weighting model significantly improves the results of GPS data analysis, while the temporal correlation of GPS observation noise can be efficiently described by means of autoregressive moving average (ARMA) processes. Furthermore, this work includes an up-to-date overview of the GNSS error effects and a comprehensive description of various mathematical methods.
The authors introduce geomathematics as an active research area to a wider audience. Chapter 1 presents an introduction to the Earth as a system to apply scientific methods. Emphasis is laid on transfers from virtual models to reality and vice versa. In the second chapter geomathematics is introduced as a new scientific area which nevertheless has its roots in antiquity. The modern conception of geomathematics is outlined from different points of view and its challenging nature is described as well as its interdisciplinarity. Geomathematics is shown as the bridge between the real world and the virtual world. The complex mathematical tools are shown from a variety of fields necessary to tackl...
This symposium continued the tradition of mid-term meetings held between the joint symposia of International Geoid and Gravity Commissions. This time, geodynamics was chosen as the third topic to accompany the traditional topics of gravity and geoid. The symposium thus aimed at bringing together geodesists and geophysicists working in the general areas of gravity, geoid and geodynamics. Besides covering the traditional research areas, special attention was paid to the use of geodetic methods for geodynamics studies, dedicated satellite missions, airborne surveys, geodesy and geodynamics of arctic regions, and the integration of geodetic and geophysical information.
This book combines elementary theory from computer science with real-world challenges in global geodetic observation, based on examples from the Geodetic Observatory Wettzell, Germany. It starts with a step-by-step introduction to developing stable and safe scientific software to run successful software projects. The use of software toolboxes is another essential aspect that leads to the application of generative programming. An example is a generative network middleware that simplifies communication. One of the book’s main focuses is on explaining a potential strategy involving autonomous production cells for space geodetic techniques. The complete software design of a satellite laser ranging system is taken as an example. Such automated systems are then combined for global interaction using secure communication tunnels for remote access. The network of radio telescopes is used as a reference. Combined observatories form coordinated multi-agent systems and offer solutions for operational aspects of the Global Geodetic Observing System (GGOS) with regard to “Industry 4.0”.
This book series is composed of peer-reviewed proceedings of selected symposia organized by the International Association of Geodesy. It deals primarily with topics related to Geodesy Earth Sciences : terrestrial reference frame, Earth gravity field, Geodynamics and Earth rotation, Positioning and engineering applications.
Geodesy is the science dealing with the determination of the position of points in space, the shape and gravity field of the Earth and with their time variations. This book collects 36 selected papers from the International Symposium on Geodetic Deformation Monitoring held in Jaén (Spain) from 17th to 19th March 2005. It contains a good overview of theoretical matters, models and results.