You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book describes the state of the art in nonlinear dynamical reconstruction theory. The chapters are based upon a workshop held at the Isaac Newton Institute, Cambridge University, UK, in late 1998. The book's chapters present theory and methods topics by leading researchers in applied and theoretical nonlinear dynamics, statistics, probability, and systems theory. Features and topics: * disentangling uncertainty and error: the predictability of nonlinear systems * achieving good nonlinear models * delay reconstructions: dynamics vs. statistics * introduction to Monte Carlo Methods for Bayesian Data Analysis * latest results in extracting dynamical behavior via Markov Models * data compression, dynamics and stationarity Professionals, researchers, and advanced graduates in nonlinear dynamics, probability, optimization, and systems theory will find the book a useful resource and guide to current developments in the subject.
This text presents the basic theory of random walks on infinite, finitely generated groups, along with certain background material in measure-theoretic probability. The main objective is to show how structural features of a group, such as amenability/nonamenability, affect qualitative aspects of symmetric random walks on the group, such as transience/recurrence, speed, entropy, and existence or nonexistence of nonconstant, bounded harmonic functions. The book will be suitable as a textbook for beginning graduate-level courses or independent study by graduate students and advanced undergraduate students in mathematics with a solid grounding in measure theory and a basic familiarity with the elements of group theory. The first seven chapters could also be used as the basis for a short course covering the main results regarding transience/recurrence, decay of return probabilities, and speed. The book has been organized and written so as to be accessible not only to students in probability theory, but also to students whose primary interests are in geometry, ergodic theory, or geometric group theory.
Burn for Burn
The book presents the winners of the Abel Prize in mathematics for the period 2018-2022: - Robert P. Langlands (2018) - Karen K. Uhlenbeck (2019) - Hillel Furstenberg and Gregory Margulis (2020) - Lászlo Lóvász and Avi Wigderson (2021) - Dennis P. Sullivan (2022) The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos from the period 2018-2022 showing many of the additional activities connected with the Abel Prize. This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer, 2014) as well as on The Abel Prize 2013-2017 (Springer, 2019), which profile the previous Abel Prize laureates.
Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This book provides a broad introduction to the subject of dynamical systems, suitable for a one- or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to such areas as number theory, data storage, and Internet search engines. This book grew out of lecture notes from the graduate dynamical systems course at the University of Maryland, College Park, and reflects not only the tastes of the authors, but also to some extent the collective opinion of the Dynamics Group at the University of Maryland, which includes experts in virtually every major area of dynamical systems.
This volume contains the proceedings of three conferences in Ergodic Theory and Symbolic Dynamics: the Oxtoby Centennial Conference, held from October 30–31, 2010, at Bryn Mawr College; the Williams Ergodic Theory Conference, held from July 27–29, 2012, at Williams College; and the AMS Special Session on Ergodic Theory and Symbolic Dynamics, held from January 17–18, 2014, in Baltimore, MD. This volume contains articles covering a variety of topics in measurable, symbolic and complex dynamics. It also includes a survey article on the life and work of John Oxtoby, providing a source of information about the many ways Oxtoby's work influenced mathematical thought in this and other fields.
Erdős asked how many distinct distances must there be in a set of n n points in the plane. Falconer asked a continuous analogue, essentially asking what is the minimal Hausdorff dimension required of a compact set in order to guarantee that the set of distinct distances has positive Lebesgue measure in R R. The finite field distance problem poses the analogous question in a vector space over a finite field. The problem is relatively new but remains tantalizingly out of reach. This book provides an accessible, exciting summary of known results. The tools used range over combinatorics, number theory, analysis, and algebra. The intended audience is graduate students and advanced undergraduates interested in investigating the unknown dimensions of the problem. Results available until now only in the research literature are clearly explained and beautifully motivated. A concluding chapter opens up connections to related topics in combinatorics and number theory: incidence theory, sum-product phenomena, Waring's problem, and the Kakeya conjecture.