You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
SPSS is beneficial for students and researchers in psychology, sociology, psychiatry, and other behavioural sciences, as it performs a wide range of univariate and multivariate operations commonly used in these fields. Introductory Statistical Procedures with SPSS is an easy to use textbook that presents the core concepts of statistical theory with applications in SPSS. The goal of this book is to give learners simple and clear instructions on how to use recent versions of SPSS, to perform a range of statistical studies. The book chapters explain elementary statistics (descriptive and inferential) giving a detailed understanding of the discussed topics. Each chapter focuses on a specific typ...
Statistical distributions are essential tools to model the characteristics of datasets, such as right or left skewness, bi-modality or multi-modality observed in different applied sciences, such as engineering, medicine, and finance. The well-known distributions like normal, Weibull, gamma and Lindley are extensively used because of their simple forms and identifiability properties. In the last decade, researchers have focused on the more complex and flexible distributions, referred to as Generalized or simply G families of probability distributions, to increase the modelling capability of these distributions by adding one or more shape parameters. The main aim of this edited book is to pres...
Virtually any random process developing chronologically can be viewed as a time series. In economics, closing prices of stocks, the cost of money, the jobless rate, and retail sales are just a few examples of many. Developed from course notes and extensively classroom-tested, Applied Time Series Analysis includes examples across a variety of fields, develops theory, and provides software to address time series problems in a broad spectrum of fields. The authors organize the information in such a format that graduate students in applied science, statistics, and economics can satisfactorily navigate their way through the book while maintaining mathematical rigor. One of the unique features of ...
Os recursos naturais são essenciais para a manutenção da vida terrestre. Neste sentido, torna-se fundamental que as atividades humanas sejam reguladas, de modo a mitigar os impactos ambientais significativos e compatibilizar as esferas econômicas, ambientais e sociais. Discussões multidisciplinares que envolvam conhecimentos relacionados aos aspectos bióticos e abióticos do meio são úteis, uma vez que promovem o maior entendimento acerca das variáveis ambientais e a possibilidade da proposição de soluções alternativas que busquem a sustentabilidade. Com isso, o segundo volume do livro “Pesquisas Multidisciplinares Aplicadas ao Meio Ambiente” contempla 10 capítulos, nos qua...
Classical Extreme Value Theory-the asymptotic distributional theory for maxima of independent, identically distributed random variables-may be regarded as roughly half a century old, even though its roots reach further back into mathematical antiquity. During this period of time it has found significant application-exemplified best perhaps by the book Statistics of Extremes by E. J. Gumbel-as well as a rather complete theoretical development. More recently, beginning with the work of G. S. Watson, S. M. Berman, R. M. Loynes, and H. Cramer, there has been a developing interest in the extension of the theory to include, first, dependent sequences and then continuous parameter stationary processes. The early activity proceeded in two directions-the extension of general theory to certain dependent sequences (e.g., Watson and Loynes), and the beginning of a detailed theory for stationary sequences (Berman) and continuous parameter processes (Cramer) in the normal case. In recent years both lines of development have been actively pursued.
Generalized Linear Models for Categorical and Continuous Limited Dependent Variables is designed for graduate students and researchers in the behavioral, social, health, and medical sciences. It incorporates examples of truncated counts, censored continuous variables, and doubly bounded continuous variables, such as percentages. The book provides broad, but unified, coverage, and the authors integrate the concepts and ideas shared across models and types of data, especially regarding conceptual links between discrete and continuous limited dependent variables. The authors argue that these dependent variables are, if anything, more common throughout the human sciences than the kind that suit ...
This detailed introduction to distribution theory uses no measure theory, making it suitable for students in statistics and econometrics as well as for researchers who use statistical methods. Good backgrounds in calculus and linear algebra are important and a course in elementary mathematical analysis is useful, but not required. An appendix gives a detailed summary of the mathematical definitions and results that are used in the book. Topics covered range from the basic distribution and density functions, expectation, conditioning, characteristic functions, cumulants, convergence in distribution and the central limit theorem to more advanced concepts such as exchangeability, models with a group structure, asymptotic approximations to integrals, orthogonal polynomials and saddlepoint approximations. The emphasis is on topics useful in understanding statistical methodology; thus, parametric statistical models and the distribution theory associated with the normal distribution are covered comprehensively.
Taking a data-driven approach, A Course on Statistics for Finance presents statistical methods for financial investment analysis. The author introduces regression analysis, time series analysis, and multivariate analysis step by step using models and methods from finance. The book begins with a review of basic statistics, including descriptive statistics, kinds of variables, and types of data sets. It then discusses regression analysis in general terms and in terms of financial investment models, such as the capital asset pricing model and the Fama/French model. It also describes mean-variance portfolio analysis and concludes with a focus on time series analysis. Providing the connection between elementary statistics courses and quantitative finance courses, this text helps both existing and future quants improve their data analysis skills and better understand the modeling process.
Probability, Markov Chains, Queues, and Simulation provides a modern and authoritative treatment of the mathematical processes that underlie performance modeling. The detailed explanations of mathematical derivations and numerous illustrative examples make this textbook readily accessible to graduate and advanced undergraduate students taking courses in which stochastic processes play a fundamental role. The textbook is relevant to a wide variety of fields, including computer science, engineering, operations research, statistics, and mathematics. The textbook looks at the fundamentals of probability theory, from the basic concepts of set-based probability, through probability distributions, ...
Focusing on Bayesian approaches and computations using simulation-based methods for inference, Time Series: Modeling, Computation, and Inference integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian t