You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the Proceedings of the 13th International Conference on p-adic Functional Analysis, held from August 12–16, 2014, at the University of Paderborn, Paderborn, Germany. The articles included in this book feature recent developments in various areas of non-Archimedean analysis, non-Archimedean functional analysis, representation theory, number theory, non-Archimedean dynamical systems and applications. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
This book explores the cutting edge of the fundamental role of generalizations of Lie theory and related non-commutative and non-associative structures in mathematics and physics.
The volume is a collection of refereed research papers on infinite dimensional groups and manifolds in mathematics and quantum physics. Topics covered are: new classes of Lie groups of mappings, the Burgers equation, the Chern--Weil construction in infinite dimensions, the hamiltonian approach to quantum field theory, and different aspects of large N limits ranging from approximation methods in quantum mechanics to modular forms and string/gauge theory duality. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of important themes of research at the forefront of mathematics and theoretical physics.
By an easy generalization of the Tannaka-Krein reconstruction we associate to the category of admissible representations of the category ${\mathcal O}$ of a Kac-Moody algebra, and its category of admissible duals, a monoid with a coordinate ring. The Kac-Moody group is the Zariski open dense unit group of this monoid. The restriction of the coordinate ring to the Kac-Moody group is the algebra of strongly regular functions introduced by V. Kac and D. Peterson. This monoid has similar structural properties as a reductive algebraic monoid. In particular it is unit regular, its idempotents related to the faces of the Tits cone. It has Bruhat and Birkhoff decompositions. The Kac-Moody algebra is isomorphic to the Lie algebra of this monoid.
Considers the Cauchy problem for a strictly hyperbolic $2\times 2$ system of conservation laws in one space dimension $u_t+ F(u)]_x=0, u(0, x)=\bar u(x), $ which is neither linearly degenerate nor genuinely non-linea
For every finitely generated recursively presented group $\mathcal G$ we construct a finitely presented group $\mathcal H$ containing $\mathcal G$ such that $\mathcal G$ is (Frattini) embedded into $\mathcal H$ and the group $\mathcal H$ has solvable conjugacy problem if and only if $\mathcal G$ has solvable conjugacy problem.
This volume contains papers based on lectures given at the 12th International Conference on p-adic Functional Analysis, which was held at the University of Manitoba on July 2-6, 2012. Through a combination of new research articles and survey papers, this book provides the reader with an overview of current developments and techniques in non-archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
Computes the 2-primary $v_1$-periodic homotopy groups of the special orthogonal groups $SO(n)$; the method is to calculate the Bendersky-Thompson spectral sequence, a $K_*$-based unstable homotopy spectral sequence, of $\operatorname{Spin}(n)$.
Considers the behavior of $\mathrm{G}_\mathcal{C}(k)$ when $\mathcal{C}$ is a locally finite equational class (variety) of algebras and $k$ is finite. This title looks at ways that algebraic properties of $\mathcal{C}$ lead to upper or lower bounds on generative complexity.
This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups. Contributors: B. Allison, D. Beltiţă, W. Bertram, J. Faulkner, Ph. Gille, H. Glöckner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova, K. Styrkas, K. Waldorf, and J.A. Wolf.