You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Bayesian Inference for Partially Identified Models: Exploring the Limits of Limited Data shows how the Bayesian approach to inference is applicable to partially identified models (PIMs) and examines the performance of Bayesian procedures in partially identified contexts. Drawing on his many years of research in this area, the author presents a thorough overview of the statistical theory, properties, and applications of PIMs. The book first describes how reparameterization can assist in computing posterior quantities and providing insight into the properties of Bayesian estimators. It next compares partial identification and model misspecification, discussing which is the lesser of the two ev...
The First Detailed Account of Statistical Analysis That Treats Models as ApproximationsThe idea of truth plays a role in both Bayesian and frequentist statistics. The Bayesian concept of coherence is based on the fact that two different models or parameter values cannot both be true. Frequentist statistics is formulated as the problem of estimating
Keep Up to Date with the Evolving Landscape of Space and Space-Time Data Analysis and Modeling Since the publication of the first edition, the statistical landscape has substantially changed for analyzing space and space-time data. More than twice the size of its predecessor, Hierarchical Modeling and Analysis for Spatial Data, Second Edition reflects the major growth in spatial statistics as both a research area and an area of application. New to the Second Edition New chapter on spatial point patterns developed primarily from a modeling perspective New chapter on big data that shows how the predictive process handles reasonably large datasets New chapter on spatial and spatiotemporal gradi...
The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a spectrum of estimation methods, including nonparametric estimation as well as parametric estimation ba...
Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured factor models that extend from the Gaussian assumption to copulas. It also discusses other multivariate constructions and parametric copula families that have different tail properties and presents extensive material on dependence and tail properties to assist in copula model selection. The author shows how numerical methods and algorithms for inference and simulation are important in high-dimensional copula applications. He presents the algorithms as pseudocode, illustrating their implementation for high-dimensional copula models. He also incorporates results to determine dependence and tail properties of multivariate distributions for future constructions of copula models.
Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently. The book reviews recent accomplishments in hypothesis testing and changepoint detection both in decision-theoretic (Bayesian) and non-decision-theoretic (non-Bayesian) contexts. The authors not only emphasize traditional binary hypotheses but also substantially more difficult multiple decision problems. They address scenarios with simple hypotheses and more realistic cases of two and finitely many composite hypotheses. The book pri...
Design and Analysis of Cross-Over Trials is concerned with a specific kind of comparative trial known as the cross-over trial, in which subjects receive different sequences of treatments. Such trials are widely used in clinical and medical research, and in other diverse areas such as veterinary science, psychology, sports science, and agriculture.T
Active-site is the region at the central atom’s position where functional activated reactions occur in many materials. Hence, it is important for the present study of material sciences to take into consideration this information of atomic structures in the reaction center of the localized impurities and catalyst and phase boundary and the photosynthetic reaction centers. However, it is very difficult to determine a three-dimensional atomic structure directly in the center positions of many functional materials.This book is written for readers to gain the basic knowledge of this “active-site”. It will benefit those who want to know the function and structure of the inorganic, organic and biological materials.
Presents nine sessions containing a total of 88 papers from a conference organized to provide a primary forum for current work on machine perception of humans and human actions. Includes papers addressing face detection, face tracking using statistical methods, face tracking, face tracking using structural methods, face recognition, tracking people and recognizing activities, gesture recognition, face expression and gaze direction, structural models, and biological vision and 3D models. Invited talks address such topics as the use of computer graphics to study the recognition of facial attributes, problems in the description and interpretation of gesture in conversation, and other topics. Illustrated throughout in b&w. Lacks a subject index.
Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. This book presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. It includes all the important theoretical details, and covers the probabilistic models and inference, robustness issues, optimization algorithms, validation techniques and variable selection methods. The book illustrates the different methods with simulated data and applies them to real-world data sets that can be easily downloaded from the web.