You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Granular or particulate materials arise in almost every aspect of our lives, including many familiar materials such as tea, coffee, sugar, sand, cement and powders. At some stage almost every industrial process involves a particulate material, and it is usually the cause of the disruption to the smooth running of the process. In the natural environment, understanding the behaviour of particulate materials is vital in many geophysical processes such as earthquakes, landslides and avalanches. This book is a collection of current research from some of the major contributors in the topic of modelling the behaviour of granular materials. Papers from every area of current activity are included, such as theoretical, numerical, engineering and computational approaches. This book illustrates the numerous diverse approaches to one of the outstanding problems of modern continuum mechanics.
The 1995-1996 program at the Institute for Mathematics and its Applications was devoted to mathematical methods in material science, and was attended by materials scientists, physicists, geologists, chemists engineers, and mathematicians. This volume contains chapters which emerged from four of the workshops, focusing on disordered materials; interfaces and thin films; mechanical response of materials from angstroms to meters; and phase transformation, composite materials and microstructure. The scales treated in these workshops ranged from the atomic to the macroscopic, the microstructures from ordered to random, and the treatments from "purely" theoretical to highly applied. Taken together, these results form a compelling and broad account of many aspects of the science of multi-scale materials, and will hopefully inspire research across the self-imposed barriers of twentieth century science.
This book presents a broad survey of models for critical and catastrophic phenomena in the geosciences, with strong emphasis on earthquakes. It assumes the perspective of statistical physics, which provides the theoretical frame for dealing with complex systems in general. This volume addresses graduate students wishing to specialize in the field and researchers working or interested in the field having a background in the physics, geosciences or applied mathematics.
It is widely known that complex systems and complex materials comprise a major interdisciplinary scientific field that draws on mathematics, physics, chemistry, biology, and medicine as well as such social sciences as economics. The role of statistical physics in this new field has been expanding. Statistical physics has shown how phenomena and processes in different research areas that have long been assumed to be unrelated can have a common description. Through the application of statistical physics, methods developed for studying order phenomena in simple systems and processes have been generalized to more complex systems. This volume focuses on recent advances and perspectives in the phy...
Although rigidity has been studied since the time of Lagrange (1788) and Maxwell (1864), it is only in the last twenty-five years that it has begun to find applications in the basic sciences. The modern era starts with Laman (1970), who made the subject rigorous in two dimensions, followed by the development of computer algorithms that can test over a million sites in seconds and find the rigid regions, and the associated pivots, leading to many applications. This workshop was organized to bring together leading researchers studying the underlying theory, and to explore the various areas of science where applications of these ideas are being implemented.
The Second Winter School on the "~hysics of Finely Divided Matter" was held at the Centre de Physique des Houches from 25 March to 5 April 1985. This meeting brought together experts from the areas of gels and porous media. People with different backgrounds - chemists, physicists - from university as well as industrial labora tories, had the opportunity to compare their most recent experimental and theoreti cal results. Although the experimental situations and techniques may seem at first sight unrelated, the theoretical interpretations are very similar and may be divided roughly into two categories: percolation and aggregation. These are present for the description of the synthesis of some ...
Invited international contributions to this exciting new research field are included in this volume. It contains the specially selected papers from 45 key specialists given at the Symposium held under the auspices of the prestigious International Union of Theoretical and Applied Mechanics at Turin in October 1994.
Investigation of the fractal and scaling properties of disordered systems has recently become a focus of great interest in research. Disordered or amorphous materials, like glasses, polymers, gels, colloids, ceramic superconductors and random alloys or magnets, do not have a homogeneous microscopic structure. The microscopic environment varies randomly from site to site in the system and this randomness adds to the complexity and the richness of the properties of these materials. A particularly challenging aspect of random systems is their dynamical behavior. Relaxation in disordered systems generally follows an unusual time-dependent trajectory. Applications of scaling and fractal concepts ...
Proceedings of the NATO Advanced Study Institute on Propagation of Correlations in Constrained Systems, Cargèse, Corsica, France, July 2-14, 1990
The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to ad vancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys. , Vol. 7, 1st edn. 1979, 2ndedn. 1986) and Applications of the Monte Carlo Meth...