You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a concise exposition of modern mathematical concepts, models and methods with applications in computer graphics, vision and machine learning. The compendium is organized in four parts — Algebra, Geometry, Topology, and Applications. One of the features is a unique treatment of tensor and manifold topics to make them easier for the students. All proofs are omitted to give an emphasis on the exposition of the concepts. Effort is made to help students to build intuition and avoid parrot-like learning.There is minimal inter-chapter dependency. Each chapter can be used as an independent crash course and the reader can start reading from any chapter — almost. This book is intended for upper level undergraduate students, graduate students and researchers in computer graphics, geometric modeling, computer vision, pattern recognition and machine learning. It can be used as a reference book, or a textbook for a selected topics course with the instructor's choice of any of the topics.
The three-volume sets constitute the refereed proceedings of the 15th International Conference on Knowledge Science, Engineering and Management, KSEM 2022, held in Singapore, during August 6–8, 2022. The 169 full papers presented in these proceedings were carefully reviewed and selected from 498 submissions. The papers are organized in the following topical sections: Volume I: Knowledge Science with Learning and AI (KSLA) Volume II: Knowledge Engineering Research and Applications (KERA) Volume III: Knowledge Management with Optimization and Security (KMOS)
A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its prac...
"In Southern Rivers: Restoring America's Freshwater Biodiversity, R. Scot Duncan explores the environmental history and future of the rivers of the southeastern United States. These river systems are the epicenter of North American freshwater biodiversity and the top global hotspot for several aquatic taxa including mussels, turtles, snails, crayfish, and temperate zone fish; these rivers also play a prominent role in the region's history, culture, and economy. Unfortunately, centuries of industrialization have impaired the region's river systems, sacrificing biodiversity and compromising their ability to provide essential ecosystem services like drinking water, waste disposal, irrigation, n...
The two volume set LNCS 3696 and LNCS 3697 constitutes the refereed proceedings of the 15th International Conference on Artificial Neural Networks, ICANN 2005, held in Warsaw, Poland in September 2005. The over 600 papers submitted to ICANN 2005 were thoroughly reviewed and carefully selected for presentation. The first volume includes 106 contributions related to Biological Inspirations; topics addressed are modeling the brain and cognitive functions, development of cognitive powers in embodied systems spiking neural networks, associative memory models, models of biological functions, projects in the area of neuroIT, evolutionary and other biological inspirations, self-organizing maps and t...
Chemical sensors contain two basic functions: recognition and transduction, and provide real-time information about substances rather than physical quantities. Such devices are extensively utilized for various applications in diverse fields. The book focuses on the physical, chemical, optical, and electrical working mechanisms of different types of sensors integrated with various smart nanomaterials and composites. The mesmerizing properties of numerous materials and their fruitful applications for detecting numerous chemical parameters are discussed here. The book provides recent progress in the chemical sensors field and connects materials, physics, chemistry, and engineering, and therefore, is suitable for engineers, industrial, and academic researchers.
This book constitutes the refereed proceedings of the 10th International Workshop on Structural and Syntactic Pattern Recognition, SSPR 2004 and the 5th International Workshop on Statistical Techniques in Pattern Recognition, SPR 2004, held jointly in Lisbon, Portugal, in August 2004. The 59 revised full papers and 64 revised poster papers presented together with 4 invited papers were carefully reviewed and selected from 219 submissions. The papers are organized in topical sections on graphs; visual recognition and detection; contours, lines, and paths; matching and superposition; transduction and translation; image and video analysis; syntactics, languages, and strings; human shape and action; sequences and graphs; pattern matching and classification; document image analysis; shape analysis; multiple classifier systems; density estimation; clustering; feature selection; classification; and representation.
From cloud computing to big data to mobile technologies, there is a vast supply of information being mined and collected. With an abundant amount of information being accessed, stored, and saved, basic controls are needed to protect and prevent security incidents as well as ensure business continuity. Applications of Security, Mobile, Analytic, and Cloud (SMAC) Technologies for Effective Information Processing and Management is a vital resource that discusses various research findings and innovations in the areas of big data analytics, mobile communication and mobile applications, distributed systems, and information security. With a focus on big data, the internet of things (IoT), mobile technologies, cloud computing, and information security, this book proves a vital resource for computer engineers, IT specialists, software developers, researchers, and graduate-level students seeking current research on SMAC technologies and information security management systems.
The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing , structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis.
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.