You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Increased industrial and agricultural activity has led to the contamination of the earth's soil and groundwater resources with hazardous chemicals. The presence of heavy metals, dyes, fluorides, dissolved solids, and many other pollutants used in industry and agriculture are responsible for hazardous levels of water pollution. The removal of these pollutants in water resources is challenging. Bioremediation is a new technique that employs living organisms, usually bacteria and fungi, to remove pollutants from soil and water, preferably in situ. This approach is more cost-effective than traditional techniques, such as incineration of soils and carbon filtration of water. It requires understan...
Over the years, the uses and applications of rare earth elements (REEs) diversified in various fields such as catalysis, production of magnets, glasses, alloys, and electronics. This book consists of fifteen chapters, which present recent advances and outlook on REEs and their oxides/salts in catalytic organic transformations, biomedical applications, bioremediation and environmental impacts.
This book aims to explore basic principles, concepts and applications of geochemistry. Topics include chemical weathering, impacts on living beings and water, geochemical cycles, oxidation and redox reactions in geochemistry, isotopes, analytical techniques, medicinal, inorganic, marine, atmospheric, and environmental applications, as well as case studies. This book helps in understanding the chemical composition of the earth and its applications. It also includes beneficial effects, bottlenecks, solutions, and future directions in geochemistry.
This new volume discusses a selection of nanomaterials that can be employed for advanced biological, nutraceutical, and medicinal applications. It discusses diverse nanomaterials and their classifications, their advanced therapeutic properties, using biosensors in detecting biological threat agents, bionanomaterials for human health, the medicinal applications of nanomaterials, clinical toxicities of nanomaterials and their use in remediation. The book also includes a chapter that provides a helpful comparison of market analysis between biological and synthetic nanomaterials. The volume concludes with an insightful perspective on possible future applications of nanomaterials as nutraceutical, biological, and medicinal agents.
This book aims to cover the applications of nanotechnology against human infectious diseases. The chapters of the book discuss the role of nanotechnology in the efficient diagnosis and treatment of these diseases. It explicitly provides an overview of nanodiagnostics for infectious diseases from nanoparticles-based, nanodevice-based, and point-of-care platforms. The book also covers the state-of-the-art review of recent progress in biomimetic and bioengineered nanotherapies to treat infectious diseases. It also presents a nano carrier-based CRISPR/Cas9 delivery system for gene editing and its applications for developing interventional approaches against communicable diseases. Further, it reviews the recent developments in nanotechnology to engineer nanoparticles with desired physicochemical properties as a line of defense against multi-drug resistance micro-organisms. Cutting across the disciplines, this book serves as a guide for researchers in biotechnology, parasitology, and nanotechnology.
Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Rechargeable battery technologies have been a milestone for moving toward a fossil-fuel-free society. They include groundbreaking changes in energy storage, transportation, and electronics. Improvements ...
Carbon-carbon and carbon-heteroatom bond-forming reactions are the backbone of synthetic organic chemistry. Scientists are constantly developing and improving these techniques in order to maximize the diversity of synthetically available molecules. These techniques must be developed in a sustainable manner in order to limit their environmental impact. This book highlights green carbon-carbon and carbon-heteroatom bond forming reactions.
The book focuses on novel sensor materials and their environmental and healthcare applications, such as NO2 detection, toxic gas and biosensing, hydrazine determination, glucose sensing and the detection of toxins and pollutants on surfaces. Materials covered include catalytic nanomaterials, metal oxides, perovskites, zeolites, spinels, graphene-based gas sensors, CNT/Ni nanocomposites, glucose biosensors, single and multi-layered stacked MXenes, black phosphorus, transition metal dichalcogenides and P3OT thin films. Keywords: Toxic Gas Sensors, Biosensors, Nitrogen Dioxide Detection, Hydrazine Determination, Glucose Sensing, Catalytic Nanomaterials, Metal Oxides, Perovskites, Zeolites, Spinels, Graphene-based Gas Sensors, CNT/Ni Nanocomposites, Mxenes, Black Phosphorus, Transition Metal Dichalcogenides, P3OT Thin Films.
Hazardous Waste Management and Health Risks presents a systematic overview of evaluating solid and hazardous waste management practices. The book introduces readers to the basic principles of hazardous waste management and progresses into related topics that allow managers to assess environmental quality. These topics include heavy metal pollution, reproductive biomarkers as signals of environmental pressure and health risks, and environmental contamination in an international perspective. With an emphasis on sustainable development throughout the text, a zero-waste strategy as an alternative way to manage hazardous waste is suggested in a dedicated chapter. This reference book is intended as an introductory guide for managers taking waste management training courses and students involved in degree courses related to environmental engineering and management.
This volume discusses innovative advancements in soil and crop microbiome technology and methods to support agricultural sustainability and reduce soil degradation. As climate change impacts agricultural productivity and soil health in impacted regions throughout the world, potential alternatives to find balance between soil health and crop yield are increasingly needed. Therefore, this book provides a timely, global perspective with a collection of expert authors to address how microbiomes can be used to achieve agricultural sustainability in threatened and degraded areas, while also covering related matters including soil health, pest management, waste disposal, environmental contamination, biofertilizer production, composting, and microbial engineering. The book is meant to serve as a reference for agriculturalists, environmentalists, graduate and post-graduate students, researchers, and professors of sustainability and agricultural management.