You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The high energy electron-positron linear collider is expected to provide crucial clues to many of the fundamental questions of our time: What is the nature of electroweak symmetry breaking? Does a Standard Model Higgs boson exist, or does nature take the route of supersymmetry, technicolor or extra dimensions, or none of the foregoing? This invaluable book is a collection of articles written by experts on many of the most important topics which the linear collider will focus on. It is aimed primarily at graduate students but will undoubtedly be useful also to any active researcher on the physics of the next generation linear collider.
The masses of fermions and gauge bosons enter the Standard Model through the Higgs mechanism, which is satisfactory technically but is not understood physically. We do not know what nature really does to give mass to particles, nor what experimental clues will lead us to nature's solution. Understanding Higgs physics is necessary in order to complete the Standard Model, and to learn how to extend it and improve its foundations.This book is a collection of current work and thinking about these questions by active workers. It speculates about what form the answers will take, as well as updates and extends previous books and reviews. Some chapters emphasize theoretical questions, some focus on connections with other areas of physics, and some discuss how we can get the data to uncover nature's solution.
Despite the great success of the standard model of electroweak and strong interactions to describe the phenomena observed in high energy physics experiments, the mechanism by which the elementary particles are endowed with their masses is yet to be unraveled. Does nature choose the Higgs mechanism of spontaneous symmetry breaking as predicted by the standard model, or do we need some alternative explanation? The purpose of the workshop is to capture new trends and ideas in this exciting area of fundamental physics, and to explore the potential of recent (LEPI), present (HERA, LEPII, SLC, Tevatron), and future (FMC, LHC, NLC) colliding-beam experiments to shed light on the Higgs puzzle.
The proceedings of the July 1989 Workshop contribute to the ongoing scientific debate on the best strategies of discovering the Higgs boson (and top quark). The papers are organized in five parts, covering theoretical issues, searches for light scalars, Higgs searches in hadronic collisions, Higgs searches in e +e -annihilation, and present experim
This book offers construction of a renormalizable effective theory of electroweak-interacting spin-1 dark matter (DM). The effective theory realizes minimal but essential features of DM predicted in extra-dimension models, and enables to systematically treat non-perturbative corrections such as the Sommerfeld effects. Deriving an annihilation cross section including the Sommerfeld effects based on the effective theory, the author discusses the future sensitivity of observations to gamma-ray from the Galactic Center. As a result, the author explains the monochromatic gamma-ray signatures originate from two photons (γγ) or photon and Z boson (γZ) produced in the process of DM annihilations, and concludes a possible scenario that unstable neutral spin-1 particles (Z’) appear and results in a spectral peak in addition to the one caused by γγ and γZ channels in gamma-ray observations. If those two spectral peaks are observed, the masses of spin-1 DM and Z’ would be reconstructed.
These proceedings contain over 100 talks on all aspects of Physics Beyond the Standard Model of the strong and electroweak interactions — ranging from Supersymmetry, Grand Unification, Technicolor, Exotic Particles, and CP Violation to Baryogenesis, Dark Matter, Strings and Black Holes — by leading authorities and the most active researchers in High Energy Physics. The goal of the conference is to provide a completely current summary of the most exciting and aesthetically appealing theoretical ideas, especially with regard to their predictions for yet undiscovered new particles, interactions and consequent phenomena. Particular emphasis is placed on current experimental limits and constraints on new physics, and on expectations and predictions regarding our ability to probe and discriminate between the many possibilities through experiments at present and future colliders in the decade(s) to come.
The Proceedings of the Workshop covers a broad range of subjects from low energy supersymmetry through supersymmetric grand unification to supergravity and superstring theories. Although the focus was mainly on theoretical problems and ideas, the present and future experimental searches of new particles were also discussed.