You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the first monograph devoted to clean ring and matrix theory. It aims to study a theory of expressing an element in a ring as the sum of some special ones, such as idempotents, units, nilpotents, tripotents, involutions, etc. A matrix over such rings is thereby expressed as the sum of some special matrices. Also another topics on the behaviors of topological properties and *-properties of such rings are investigated.The book is based on the results of various published papers, particularly, by the authors'. It is accessible for students familiar with general abstract algebra, while the topics are interesting for researchers in the field of ring, matrix and operator theory.
This monograph is concerned with exchange rings in various conditions related to stable range. Diagonal reduction of regular matrices and cleanness of square matrices are also discussed. Readers will come across various topics: cancellation of modules, comparability of modules, cleanness, monoid theory, matrix theory, K-theory, topology, amongst others. This is a first-ever book that contains many of these topics considered under stable range conditions. It will be of great interest to researchers and graduate students involved in ring and module theories.
This volume gathers results in pure and applied algebra from researchers around the globe. The selection of these papers was carried out under the auspices of a special editorial board.
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and symbolic dynamics. With its descriptive writing style, this book is highly accessible.
This volume contains the proceedings of the Ring Theory Session in honor of T. Y. Lam's 70th birthday, at the 31st Ohio State-Denison Mathematics Conference, held from May 25-27, 2012, at The Ohio State University, Columbus, Ohio. Included are expository articles and research papers covering topics such as cyclically presented modules, Eggert's conjecture, the Mittag-Leffler conditions, clean rings, McCoy rings, QF rings, projective and injective modules, Baer modules, and Leavitt path algebras. Graduate students and researchers in many areas of algebra will find this volume valuable as the papers point out many directions for future work; in particular, several articles contain explicit lists of open questions.
None