Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Theory Of Clean Rings And Matrices
  • Language: en
  • Pages: 693

Theory Of Clean Rings And Matrices

This is the first monograph devoted to clean ring and matrix theory. It aims to study a theory of expressing an element in a ring as the sum of some special ones, such as idempotents, units, nilpotents, tripotents, involutions, etc. A matrix over such rings is thereby expressed as the sum of some special matrices. Also another topics on the behaviors of topological properties and *-properties of such rings are investigated.The book is based on the results of various published papers, particularly, by the authors'. It is accessible for students familiar with general abstract algebra, while the topics are interesting for researchers in the field of ring, matrix and operator theory.

Rings Related to Stable Range Conditions
  • Language: en
  • Pages: 680

Rings Related to Stable Range Conditions

This monograph is concerned with exchange rings in various conditions related to stable range. Diagonal reduction of regular matrices and cleanness of square matrices are also discussed. Readers will come across various topics: cancellation of modules, comparability of modules, cleanness, monoid theory, matrix theory, K-theory, topology, amongst others. This is a first-ever book that contains many of these topics considered under stable range conditions. It will be of great interest to researchers and graduate students involved in ring and module theories.

Von Neumann Regular Rings
  • Language: en
  • Pages: 468

Von Neumann Regular Rings

  • Type: Book
  • -
  • Published: 1991
  • -
  • Publisher: Unknown

None

A First Course in Noncommutative Rings
  • Language: en
  • Pages: 410

A First Course in Noncommutative Rings

One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting gr...

Commutative Semigroup Rings
  • Language: en
  • Pages: 392

Commutative Semigroup Rings

Commutative Semigroup Rings was the first exposition of the basic properties of semigroup rings. Gilmer concentrates on the interplay between semigroups and rings, thereby illuminating both of these important concepts in modern algebra.

Rings of Continuous Functions
  • Language: en
  • Pages: 321

Rings of Continuous Functions

Designed as a text as well as a treatise, the first systematic account of the theory of rings of continuous functions remains the basic graduate-level book in this area. 1960 edition.

An Introduction to Noncommutative Noetherian Rings
  • Language: en
  • Pages: 372

An Introduction to Noncommutative Noetherian Rings

This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.

Hilbert Spaces of Analytic Functions
  • Language: en

Hilbert Spaces of Analytic Functions

Hilbert spaces of analytic functions are currently a very active field of complex analysis. The Hardy space is the most senior member of this family. However, other classes of analytic functions such as the classical Bergman space, the Dirichlet space, the de Branges-Rovnyak spaces, and various spaces of entire functions, have been extensively studied. This provides an account of the latest developments in the field of analytic function theory.

Infinite Dimensional Lie Algebras And Groups
  • Language: en
  • Pages: 642

Infinite Dimensional Lie Algebras And Groups

Contents:Integrable Representation of Kac-Moody Algebras: Results and Open Problems (V Chari & A Pressley)Existence of Certain Components in the Tensor Product of Two Integrable Highest Weight Modules for Kac-Moody Algebras (SKumar)Frobenius Action on the B-Cohomology (O Mathieu)Certain Rank Two Subsystems of Kac-Moody Root Systems (J Morita)Lie Groups Associated to Kac-Moody Lie Algebras: An Analytic Approach (E Rodriguez-Carrington)Almost Split-K-Forms of Kac-Moody Algebras (G Rousseau)Global Representations of the Diffeomorphism Groups of the Circle (F Bien)Path Space Realization of the Basic Representation of An(1) (E Date et al)Boson-Fermion Correspondence Over (C De Concini et al)Class...

Leavitt Path Algebras
  • Language: en
  • Pages: 296

Leavitt Path Algebras

  • Type: Book
  • -
  • Published: 2017-11-30
  • -
  • Publisher: Springer

This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and symbolic dynamics. With its descriptive writing style, this book is highly accessible.