You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new book, Advances in Energy Materials and Environment Engineering, covers the timely issue of green applications of materials. It covers the diverse usages of carbon nanotubes for energy, for power, for the protection of the environment, and for new energy applications. The diverse topics in the volume include energy saving technologies, renewable energy, clean energy development, nuclear engineering and hydrogen energy, advanced power semiconductors, power systems and energy and much more. This timely book addresses the need of the hour and will prove to be valuable for environmentally conscious industry professionals, faculty and students, and researchers in materials science, engineering, and environment with interest in energy materials.
None
Carbon nanotubes (CNTs), discovered in 1991, have been a subject of intensive research for a wide range of applications. In the past decades, although carbon nanotubes have undergone massive research, considering the success of silicon, it has, nonetheless, been difficult to appreciate the potential influence of carbon nanotubes in current technology. The main objective of this book is therefore to give a wide variety of possible applications of carbon nanotubes in many industries related to electron device technology. This should allow the user to better appreciate the potential of these innovating nanometer sized materials. Readers of this book should have a good background on electron devices and semiconductor device physics as this book presents excellent results on possible device applications of carbon nanotubes. This book begins with an analysis on fabrication techniques, followed by a study on current models, and it presents a significant amount of work on different devices and applications available to current technology.
Thermal energy is present in all aspects of our lives, including when cooking, driving, or turning on the heat or air conditioning. Sometimes this thermal management is not evident, but it is essential for our comfort and lifestyle. In addition, heat transfer is vital in many industrial processes. Thermal energy analysis is a complex task that usually requires different approaches. With five sections, this book provides information on heat transfer problems and using experimental techniques and computational models to analyse them.
This collection focuses on energy efficient technologies including innovative ore beneficiation, smelting technologies, recycling and waste heat recovery. The volume also covers various technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions. Papers addressing renewable energy resources for metals and materials production, waste heat recovery and other industrial energy efficient technologies, new concepts or devices for energy generation and conversion, energy efficiency improvement in process engineering, sustainability and life cycle assessment of energy systems, as...
Advances in chemical engineering are focused on intensification of reactions, unit operations and mechanical operations. Intensification facilitates reduction in cost, size and increase in conversion, separation and selectivity. In case of distillation, reactive distillation can reduce energy cost and increase product quality considerably compared to conventional reactor- separator method. Similar advantages can be considered for reaction adsorption and other reactive separations. Use of non-renewable energy sources can reduce burden on conventional feed stocks and reduce carbon foot prints. Nano materials are gaining importance due to their unique properties. Application of nanomaterial for...
The book Materials for Sustainable Energy Storage Devices at the Nanoscale anticipates covering all electrochemical energy storage devices such as supercapacitors, lithium-ion batteries (LIBs), and fuel cells, transformation and enhancement materials for solar cells, photocatalysis, etc. The focal objective of the book is to deliver stunning and current information to the materials application at nanoscale to researchers and scientists in our contemporary time towardthe enhancement of energy conversion and storage devices. However, the contents of the proposed book, Materials for Sustainable Energy Storage at the Nanoscale, will cover various fundamental principles and wide knowledge of diff...
Evidently, electrochemical sensing has revolutionized the electroanalytical detections in the world. Since the 19th century, a huge amount of growth has been visible on various fronts, such as biosensors, energy devices, semiconductor devices, communication, embedded systems, sensors etc. However, the major research gap lies in the fact that most of the reported literatures are bulk systems; hence there are limitations for practical applications. Research in these domains has been carried out by both academia and industry, whereby academics is the backbone whose intellectual outputs have been widely adopted by the industry and implemented for consumers at large. In order to impart portabilit...
In the last few years, Nanoparticles and their applications dramatically diverted science in the direction of brand new philosophy. The properties of many conventional materials changed when formed from nanoparticles. Nanoparticles have a greater surface area per weight than larger particles which causes them to be more reactive and effective than other molecules. In this book, we (InTech publisher, editor and authors) have invested a lot of effort to include 25 most advanced technology chapters. The book is organised into three well-heeled parts. We would like to invite all Nanotechnology scientists to read and share the knowledge and contents of this book.
None