You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.
This book includes selected papers from the ECCOMAS Thematic Conference on Multibody Dynamics, that took place in Barcelona, Spain, from June 29 to July 2, 2015. By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical systems, and nanotechnologies.
This book reports on the latest scientific achievements on robot kinematics provided by the prominent researchers participating in the 18th International Symposium on Advances in Robot Kinematics ARK2022, organized in the University of the Basque Country, Bilbao, Spain. It is of interest to researchers wanting to know more about the latest topics and methods in the fields of the kinematics, control and design of robotic systems. The book brings together 53 peer-reviewed papers. These cover the full range of robotic systems, including serial, parallel, flexible mechanisms, and cable-driven manipulators, and tackle problems such as: kinematic analysis of robots, robot modelling and simulation, theories and methods in kinematics, singularity analysis, kinematic problems in parallel robots, redundant robots, cable robots, kinematics in biological systems, flexible parallel manipulators, humanoid robots and humanoid subsystems.
During the last decades, the growth of micro-electronics has reduced the cost of computing power to a level acceptable to industry and has made possible sophisticated control strategies suitable for many applications. Vibration c- trol is applied to all kinds of engineering systems to obtain the desired dynamic behavior, improved accuracy and increased reliability during operation. In this context, one can think of applications related to the control of structures’ vib- tion isolation, control of vehicle dynamics, noise control, control of machines and mechanisms and control of ?uid-structure-interaction. One could continue with this list for a long time. Research in the ?eld of vibration ...
Alexander Reiter describes optimal path and trajectory planning for serial robots in general, and rigorously treats the challenging application of path tracking for kinematically redundant manipulators therein in particular. This is facilitated by resolving both the path tracking task and the optimal inverse kinematics problem simultaneously. Furthermore, the author presents methods for fast computation of approximate optimal solutions to planning problems with changing parameters. With an optimal solution to a nominal problem, an iterative process based on parametric sensitivities is applied to rapidly obtain an approximate solution. About the Author: Dr. Alexander Reiter is a senior scientist at the Institute of Robotics of the Johannes Kepler University (JKU) Linz, Austria. His major fields of research are kinematics, dynamics, and trajectory planning for kinematically redundant serial robots as well as real-time methods for solving parametric non-linear programming problems.
This book presents the proceedings of the 32nd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD), held in Bled, Slovenia, June 14-16, 2023. It gathers contributions by researchers from several countries on all major areas of robotic research, development and innovation, as well as new applications and current trends. The topics covered include: novel designs and applications of robotic systems, intelligent cooperating and service robots, advanced robot control, human-robot interfaces, robot vision systems, mobile robots, humanoid and walking robots, bio-inspired and swarm robotic systems, aerial, underwater and spatial robots, robots for ambient assisted living, medical robots and bionic prostheses, cognitive robots, cloud robotics, ethical and social issues in robotics, etc. Given its scope, the book offers a source of information and inspiration for researchers seeking to improve their work and gather new ideas for future developments.
This volume contains the proceedings of the 26th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2017, held at the Polytechnic University of Turin, Italy, from June 21-23, 2017. The conference brought together academic and industrial researchers in robotics from 30 countries, the majority of them affiliated to the Alpe-Adria-Danube Region, and their worldwide partners. RAAD 2017 covered all major areas of R&D and innovation in robotics, including the latest research trends. The book provides an overview on the advances in service and industrial robotics. The topics are presented in a sequence starting from the classical robotic subjects, such as kinematics, dynamics, structures, control, and ending with the newest topics, like human-robot interaction and biomedical applications. Researchers involved in the robotic field will find this an extraordinary and up-to-date perspective on the state of the art in this area.
This book presents the proceedings of the 28th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2019, held at the Fraunhofer Zentrum and the Technische Universität in Kaiserslautern, Germany, on 19–21 June 2019. The conference brought together academic researchers in robotics from 20 countries, mainly affiliated to the Alpe-Adria-Danube Region and covered all major areas of robotic research, development and innovation as well as new applications and current trends. Offering a comprehensive overview of the ongoing research in the field of robotics, the book is a source of information and inspiration for researchers wanting to improve their work and gather new ideas for future developments. It also provides researchers with an innovative and up-to-date perspective on the state of the art in this area.
The two volume set LNAI 7101 and 7102 constitute the refereed proceedings of the 4th International Conference on Intelligent Robotics and Applications, ICIRA 2011, held in Aachen, Germany, in November 2011. The 122 revised full papers presented were thoroughly reviewed and selected from numerous submissions. They are organized in topical sections on progress in indoor UAV, robotics intelligence, industrial robots, rehabilitation robotics, mechanisms and their applications, multi robot systems, robot mechanism and design, parallel kinematics, parallel kinematics machines and parallel robotics, handling and manipulation, tangibility in human-machine interaction, navigation and localization of mobile robot, a body for the brain: embodied intelligence in bio-inspired robotics, intelligent visual systems, self-optimising production systems, computational intelligence, robot control systems, human-robot interaction, manipulators and applications, stability, dynamics and interpolation, evolutionary robotics, bio-inspired robotics, and image-processing applications.
This volume, which brings together research presented at the IUTAM Symposium Intelligent Multibody Systems – Dynamics, Control, Simulation, held at Sozopol, Bulgaria, September 11-15, 2017, focuses on preliminary virtual simulation of the dynamics of motion, and analysis of loading of the devices and of their behaviour caused by the working conditions and natural phenomena. This requires up-to-date methods for dynamics analysis and simulation, novel methods for numerical solution of ODE and DAE, real-time simulation, passive, semi-passive and active control algorithms. Applied examples are mechatronic (intelligent) multibody systems, autonomous vehicles, space structures, structures expose...