You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Rough set approach to reasoning under uncertainty is based on inducing knowledge representation from data under constraints expressed by discernibility or, more generally, similarity of objects. Knowledge derived by this approach consists of reducts, decision or association rules, dependencies, templates, or classifiers. This monograph presents the state of the art of this area. The reader will find here a deep theoretical discussion of relevant notions and ideas as well as rich inventory of algorithmic and heuristic tools for knowledge discovery by rough set methods. An extensive bibliography will help the reader to get an acquaintance with this rapidly growing area of research.
A comprehensive introduction to mathematical structures essential for Rough Set Theory. The book enables the reader to systematically study all topics of rough set theory. After a detailed introduction in Part 1 along with an extensive bibliography of current research papers. Part 2 presents a self-contained study that brings together all the relevant information from respective areas of mathematics and logics. Part 3 provides an overall picture of theoretical developments in rough set theory, covering logical, algebraic, and topological methods. Topics covered include: algebraic theory of approximation spaces, logical and set-theoretical approaches to indiscernibility and functional dependence, topological spaces of rough sets. The final part gives a unique view on mutual relations between fuzzy and rough set theories (rough fuzzy and fuzzy rough sets). Over 300 excercises allow the reader to master the topics considered. The book can be used as a textbook and as a reference work.
This volume contains the papers selected for presentation at the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, organized at the University of Regina, August 31st–September 3rd, 2005.
This volume contains the papers selected for presentation at the 10th Int- national Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, organized at the University of Regina, August 31st–September 3rd, 2005. This conference followed in the footsteps of inter- tional events devoted to the subject of rough sets, held so far in Canada, China, Japan,Poland,Sweden, and the USA. RSFDGrC achievedthe status of biennial international conference, starting from 2003 in Chongqing, China. The theory of rough sets, proposed by Zdzis law Pawlak in 1982, is a model of approximate reasoning. The main idea is based on indiscernibility relations that describe indistinguis...
Soft computing comprises various paradigms dedicated to approximately solving real-world problems, e.g. in decision making, classification or learning; among these paradigms are fuzzy sets, rough sets, neural networks, genetic algorithms, and others. It is well understood now in the soft computing community that hybrid approaches combining various paradigms are very promising approaches for solving complex problems. Exploiting the potential and strength of both neural networks and rough sets, this book is devoted to rough-neuro computing which is also related to the novel aspect of computing based on information granulation, in particular to computing with words. It provides foundational and methodological issues as well as applications in various fields.
ThePaci?c-AsiaConferenceonKnowledgeDiscoveryandDataMining(PAKDD) has been held every year since 1997. PAKDD 2008, the 12th in the series, was heldatOsaka,JapanduringMay20–23,2008.PAKDDisaleadinginternational conference in the area of data mining. It provides an international forum for - searchers and industry practitioners to share their new ideas, original research results, and practical development experiences from all KDD-related areas - cluding data mining, data warehousing, machine learning, databases, statistics, knowledge acquisition, automatic scienti?c discovery, data visualization, causal induction, and knowledge-based systems. This year we received a total of 312 research papers...
This book constitutes the refereed proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2007, held in Nanjing, China, May 2007. It covers new ideas, original research results and practical development experiences from all KDD-related areas including data mining, machine learning, data warehousing, data visualization, automatic scientific discovery, knowledge acquisition and knowledge-based systems.
The volume LNAI 12179 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2020, which was due to be held in Havana, Cuba, in June 2020. The conference was held virtually due to the COVID-19 pandemic. The 37 full papers accepted were carefully reviewed and selected from 50 submissions. The papers are grouped in the following topical sections: general rough sets; three-way decision theory; attribute reduction; granular computing; formal concept analysis; data summarization; community detection; fuzzy cognitive maps; tutorials.
In 1982, Professor Pawlak published his seminal paper on what he called "rough sets" - a work which opened a new direction in the development of theories of incomplete information. Today, a decade and a half later, the theory of rough sets has evolved into a far-reaching methodology for dealing with a wide variety of issues centering on incompleteness and imprecision of information - issues which playa key role in the conception and design of intelligent information systems. "Incomplete Information: Rough Set Analysis" - or RSA for short - presents an up-to-date and highly authoritative account of the current status of the basic theory, its many extensions and wide-ranging applications. Edited by Professor Ewa Orlowska, one of the leading contributors to the theory of rough sets, RSA is a collection of nineteen well-integrated chapters authored by experts in rough set theory and related fields. A common thread that runs through these chapters ties the concept of incompleteness of information to those of indiscernibility and similarity.
The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, starting from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness, and incompleteness, such as fuzzy sets and theory of evidence. This first volume of the Transactions on Rough Sets opens with an introductory article by Zdzislaw Pawlak, the originator of rough sets. Nine papers deal with rough set theory and eight are devoted to applications in various domains.