You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The second edition covers the introduction to the main mathematical tools of nonlinear functional analysis, which are also used in the study of concrete problems in economics, engineering, and physics. The new edition includes some new topics on Banach spaces of functions and measures and nonlinear analysis.
This book is based on the lectures presented at the Special Session on Nonlinear Functional Analysis of the American Mathematical Society Regional Meeting, held at New Jersey Institute of Technology. It explores global invertibility and finite solvability of nonlinear differential equations.
This single-volume textbook covers the fundamentals of linear and nonlinear functional analysis, illustrating most of the basic theorems with numerous applications to linear and nonlinear partial differential equations and to selected topics from numerical analysis and optimization theory. This book has pedagogical appeal because it features self-contained and complete proofs of most of the theorems, some of which are not always easy to locate in the literature or are difficult to reconstitute. It also offers 401 problems and 52 figures, plus historical notes and many original references that provide an idea of the genesis of the important results, and it covers most of the core topics from functional analysis.
The caratheodory approach; Infinite-dimensional optimization; Duality theory.
Contemplating the randomness of nature, Ekeland extends his consideration of the catastrophe theory of the universe begun in Mathematics and the Unexpected, drawing upon rich literary sources and current topics in math and physics such as chaos theory, information theory, and particle physics. Line drawings.
This volume contains a number of research-expository articles that appeared in the Bulletin of the AMS between 1979 and 1984 and that address the general area of nonlinear functional analysis and global analysis and their applications. The central theme concerns qualitative methods in the study of nonlinear problems arising in applied mathematics, mathematical physics, and geometry. Since these articles first appeared, the methods and ideas they describe have been applied in an ever-widening array of applications. Readers will find this collection useful, as it brings together a range of influential papers by some of the leading researchers in the field.
This volume covers a wide range of areas in mathematics and mathematics education. There is emphasis on applied mathematics, including partial differential equations, dynamical systems, and difference equations. Other areas represented include algebra and number theory, statistics, and issues in mathematics education.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
What are the methodologies for assessing and improving governmental policy in light of well-being? The Oxford Handbook of Well-Being and Public Policy provides a comprehensive, interdisciplinary treatment of this topic. The contributors draw from welfare economics, moral philosophy, and psychology and are leading scholars in these fields. The Handbook includes thirty chapters divided into four Parts. Part I covers the full range of methodologies for evaluating governmental policy and assessing societal condition-including both the leading approaches in current use by policymakers and academics (such as GDP, cost-benefit analysis, cost-effectiveness analysis, inequality and poverty metrics, a...
This book presents functional analytic methods in a unified manner with applications to economics, social sciences, and engineering. Ideal for those without an extensive background in the area, it develops topology, convexity, Banach lattices, integration, correspondences, and the analytic approach to Markov processes. Many of the results were previously available only in esoteric monographs and will interest researchers and students who will find the material readily applicable to problems in control theory and economics.
Mathematical finance has grown into a huge area of research which requires a large number of sophisticated mathematical tools. This book simultaneously introduces the financial methodology and the relevant mathematical tools in a style that is mathematically rigorous and yet accessible to practitioners and mathematicians alike. It interlaces financial concepts such as arbitrage opportunities, admissible strategies, contingent claims, option pricing and default risk with the mathematical theory of Brownian motion, diffusion processes, and Lévy processes. The first half of the book is devoted to continuous path processes whereas the second half deals with discontinuous processes. The extensive bibliography comprises a wealth of important references and the author index enables readers quickly to locate where the reference is cited within the book, making this volume an invaluable tool both for students and for those at the forefront of research and practice.