You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The second edition covers the introduction to the main mathematical tools of nonlinear functional analysis, which are also used in the study of concrete problems in economics, engineering, and physics. The new edition includes some new topics on Banach spaces of functions and measures and nonlinear analysis.
The volume will consist of about 40 articles written by some very influential mathematicians of our time and will expose the latest achievements in the broad area of nonlinear analysis and its various interdisciplinary applications.
The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the latest information.
This textbook introduces the study of partial differential equations using both analytical and numerical methods. By intertwining the two complementary approaches, the authors create an ideal foundation for further study. Motivating examples from the physical sciences, engineering, and economics complete this integrated approach. A showcase of models begins the book, demonstrating how PDEs arise in practical problems that involve heat, vibration, fluid flow, and financial markets. Several important characterizing properties are used to classify mathematical similarities, then elementary methods are used to solve examples of hyperbolic, elliptic, and parabolic equations. From here, an accessi...
While there is a plethora of excellent, but mostly "tell-it-all'' books on the subject, this one is intended to take a unique place in what today seems to be a still wide open niche for an introductory text on the basics of functional analysis to be taught within the existing constraints of the standard, for the United States, one-semester graduate curriculum (fifteen weeks with two seventy-five-minute lectures per week). The book consists of seven chapters and an appendix taking the reader from the fundamentals of abstract spaces (metric, vector, normed vector, and inner product), through the basics of linear operators and functionals, the three fundamental principles (the Hahn-Banach Theor...
This book is an in-depth and modern presentation of important classical results in complex analysis and is suitable for a first course on the topic, as taught by the authors at several universities. The level of difficulty of the material increases gradually from chapter to chapter, and each chapter contains many exercises with solutions and applications of the results, with the particular goal of showcasing a variety of solution techniques.
This well-thought-out book covers the fundamentals of nonlinear analysis, with a particular focus on variational methods and their applications. Starting from preliminaries in functional analysis, it expands in several directions such as Banach spaces, fixed point theory, nonsmooth analysis, minimax theory, variational calculus and inequalities, critical point theory, monotone, maximal monotone and pseudomonotone operators, and evolution problems.
Iterative Methods for Fixed Points of Nonlinear Operators offers an introduction into iterative methods of fixed points for nonexpansive mappings, pseudo-contrations in Hilbert Spaces and in Banach Spaces. Iterative methods of zeros for accretive mappings in Banach Spaces and monotone mappings in Hilbert Spaces are also discussed. It is an essential work for mathematicians and graduate students in nonlinear analysis.
The book is intended as a text for a one-semester graduate course in operator theory to be taught "from scratch'', not as a sequel to a functional analysis course, with the basics of the spectral theory of linear operators taking the center stage. The book consists of six chapters and appendix, with the material flowing from the fundamentals of abstract spaces (metric, vector, normed vector, and inner product), the Banach Fixed-Point Theorem and its applications, such as Picard's Existence and Uniqueness Theorem, through the basics of linear operators, two of the three fundamental principles (the Uniform Boundedness Principle and the Open Mapping Theorem and its equivalents: the Inverse Mapp...
This book on functional analysis covers all the basics of the subject (normed, Banach and Hilbert spaces, Lebesgue integration and spaces, linear operators and functionals, compact and self-adjoint operators, small parameters, fixed point theory) with a strong focus on examples, exercises and practical problems, thus making it ideal as course material but also as a reference for self-study.