You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is devoted to new methods of control for complex dynamical systems and deals with nonlinear control systems having several degrees of freedom, subjected to unknown disturbances, and containing uncertain parameters. Various constraints are imposed on control inputs and state variables or their combinations. The book contains an introduction to the theory of optimal control and the theory of stability of motion, and also a description of some known methods based on these theories. Major attention is given to new methods of control developed by the authors over the last 15 years. Mechanical and electromechanical systems described by nonlinear Lagrange’s equations are considered. Gen...
Adaptive Control (second edition) shows how a desired level of system performance can be maintained automatically and in real time, even when process or disturbance parameters are unknown and variable. It is a coherent exposition of the many aspects of this field, setting out the problems to be addressed and moving on to solutions, their practical significance and their application. Discrete-time aspects of adaptive control are emphasized to reflect the importance of digital computers in the application of the ideas presented. The second edition is thoroughly revised to throw light on recent developments in theory and applications with new chapters on: multimodel adaptive control with switch...
This monograph develops adaptive stochastic methods in computational mathematics. The authors discuss the basic ideas of the algorithms and ways to analyze their properties and efficiency. Methods of evaluation of multidimensional integrals and solutions of integral equations are illustrated by multiple examples from mechanics, theory of elasticity, heat conduction and fluid dynamics. Contents Part I: Evaluation of Integrals Fundamentals of the Monte Carlo Method to Evaluate Definite Integrals Sequential Monte Carlo Method and Adaptive Integration Methods of Adaptive Integration Based on Piecewise Approximation Methods of Adaptive Integration Based on Global Approximation Numerical Experiments Adaptive Importance Sampling Method Based on Piecewise Constant Approximation Part II: Solution of Integral Equations Semi-Statistical Method of Solving Integral Equations Numerically Problem of Vibration Conductivity Problem on Ideal-Fluid Flow Around an Airfoil First Basic Problem of Elasticity Theory Second Basic Problem of Elasticity Theory Projectional and Statistical Method of Solving Integral Equations Numerically
Data Approximation by Low-complexity Models details the theory, algorithms, and applications of structured low-rank approximation. Efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. Much of the text is devoted to describing the applications of the theory including: system and control theory; signal processing; computer algebra for approximate factorization and common divisor computation; computer vision for image deblurring and segmentation; machine learning for information retrieval and clustering; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; and psychometrics for factor analysis. Software implementation of the methods is given, making the theory directly applicable in practice. All numerical examples are included in demonstration files giving hands-on experience and exercises and MATLAB® examples assist in the assimilation of the theory.
Data-Based Controller Design presents a comprehensive analysis of data-based control design. It brings together the different data-based design methods that have been presented in the literature since the late 1990’s. To the best knowledge of the author, these data-based design methods have never been collected in a single text, analyzed in depth or compared to each other, and this severely limits their widespread application. In this book these methods will be presented under a common theoretical framework, which fits also a large family of adaptive control methods: the MRAC (Model Reference Adaptive Control) methods. This common theoretical framework has been developed and presented very...
There are plenty of challenging and interesting problems open for investigation in the field of switched systems. Stability issues help to generate many complex nonlinear dynamic behaviors within switched systems. The authors present a thorough investigation of stability effects on three broad classes of switching mechanism: arbitrary switching where stability represents robustness to unpredictable and undesirable perturbation, constrained switching, including random (within a known stochastic distribution), dwell-time (with a known minimum duration for each subsystem) and autonomously-generated (with a pre-assigned mechanism) switching; and designed switching in which a measurable and freely-assigned switching mechanism contributes to stability by acting as a control input. For each of these classes this book propounds: detailed stability analysis and/or design, related robustness and performance issues, connections to other control problems and many motivating and illustrative examples.
Although the problem of nonlinear controller design is as old as that of linear controller design, the systematic design methods framed in response are more sparse. Given the range and complexity of nonlinear systems, effective new methods of control design are therefore of significant importance. Dynamic Surface Control of Uncertain Nonlinear Systems provides a theoretically rigorous and practical introduction to nonlinear control design. The convex optimization approach applied to good effect in linear systems is extended to the nonlinear case using the new dynamic surface control (DSC) algorithm developed by the authors. A variety of problems – DSC design, output feedback, input saturat...
Cooperative Control Design: A Systematic, Passivity-Based Approach discusses multi-agent coordination problems, including formation control, attitude coordination, and synchronization. The goal of the book is to introduce passivity as a design tool for multi-agent systems, to provide exemplary work using this tool, and to illustrate its advantages in designing robust cooperative control algorithms. The discussion begins with an introduction to passivity and demonstrates how passivity can be used as a design tool for motion coordination. Followed by the case of adaptive redesigns for reference velocity recovery while describing a basic design, a modified design and the parameter convergence problem. Formation control is presented as it relates to relative distance control and relative position control. The coverage is concluded with a comprehensive discussion of agreement and the synchronization problem with an example using attitude coordination.
Distributed Coordination of Multi-agent Networks introduces problems, models, and issues such as collective periodic motion coordination, collective tracking with a dynamic leader, and containment control with multiple leaders, and explores ideas for their solution. Solving these problems extends the existing application domains of multi-agent networks; for example, collective periodic motion coordination is appropriate for applications involving repetitive movements, collective tracking guarantees tracking of a dynamic leader by multiple followers in the presence of reduced interaction and partial measurements, and containment control enables maneuvering of multiple followers by multiple leaders.
Nonlinear Model Predictive Control is a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. NMPC schemes with and without stabilizing terminal constraints are detailed and intuitive examples illustrate the performance of different NMPC variants. An introduction to nonlinear optimal control algorithms gives insight into how the nonlinear optimisation routine – the core of any NMPC controller – works. An appendix covering NMPC software and accompanying software in MATLAB® and C++(downloadable from www.springer.com/ISBN) enables readers to perform computer experiments exploring the possibilities and limitations of NMPC.