You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The subject of sparse matrices has its root in such diverse fields as management science, power systems analysis, surveying, circuit theory, and structural analysis. Efficient use of sparsity is a key to solving large problems in many fields. This book provides both insight and answers for those attempting to solve these problems.
The method of least squares, discovered by Gauss in 1795, is a principal tool for reducing the influence of errors when fitting a mathematical model to given observations. Applications arise in many areas of science and engineering. The increased use of automatic data capturing frequently leads to large-scale least squares problems. Such problems can be solved by using recent developments in preconditioned iterative methods and in sparse QR factorization. The first edition of Numerical Methods for Least Squares Problems was the leading reference on the topic for many years. The updated second edition stands out compared to other books on this subject because it provides an in-depth and up-to...
Although there are many advanced and specialized texts and handbooks on algorithms, until now there was no book that focused exclusively on the wide variety of data structures that have been reported in the literature. The Handbook of Data Structures and Applications responds to the needs of students, professionals, and researchers who need a mainstream reference on data structures by providing a comprehensive survey of data structures of various types. Divided into seven parts, the text begins with a review of introductory material, followed by a discussion of well-known classes of data structures, Priority Queues, Dictionary Structures, and Multidimensional structures. The editors next ana...
Although the last decade has witnessed significant advances in control theory for finite and infinite dimensional systems, the stability and control of time-delay systems have not been fully investigated. Many problems exist in this field that are still unresolved, and there is a tendency for the numerical methods available either to be too general or too specific to be applied accurately across a range of problems. This monograph brings together the latest trends and new results in this field, with the aim of presenting methods covering a large range of techniques. Particular emphasis is placed on methods that can be directly applied to specific problems. The resulting book is one that will be of value to both researchers and practitioners.
LNCS volumes 2073 and 2074 contain the proceedings of the International Conference on Computational Science, ICCS 2001, held in San Francisco, California, May 27 -31, 2001. The two volumes consist of more than 230 contributed and invited papers that reflect the aims of the conference to bring together researchers and scientists from mathematics and computer science as basic computing disciplines, researchers from various application areas who are pioneering advanced application of computational methods to sciences such as physics, chemistry, life sciences, and engineering, arts and humanitarian fields, along with software developers and vendors, to discuss problems and solutions in the area, to identify new issues, and to shape future directions for research, as well as to help industrial users apply various advanced computational techniques.
This compact yet thorough tutorial is the perfect introduction to the basic concepts of solving partial differential equations (PDEs) using parallel numerical methods. In just eight short chapters, the authors provide readers with enough basic knowledge of PDEs, discretization methods, solution techniques, parallel computers, parallel programming, and the run-time behavior of parallel algorithms to allow them to understand, develop, and implement parallel PDE solvers. Examples throughout the book are intentionally kept simple so that the parallelization strategies are not dominated by technical details.
This book constitutes the refereed proceedings of the 7th International Conference on Applied Parallel Computing, PARA 2004, held in June 2004. The 118 revised full papers presented together with five invited lectures and 15 contributed talks were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in topical sections.
This book provides an introduction to computer benchmarking. Hockney includes material concerned with the definition of performance parameters and metrics and defines a set of suitable metrics with which to measure performance and units with which to express them. He also presents new ideas resulting from the application of dimensional analysis to the field of computer benchmarking. This results in the definition of a dimensionless universal scaling diagram that completely describes the scaling properties of a class of computer benchmarks on a single diagram, for all problem sizes and all computers describable by a defined set of hardware parameters.