You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the Colloquium "Analysis, Manifolds and Physics" organized in honour of Yvonne Choquet-Bruhat by her friends, collaborators and former students, on June 3, 4 and 5, 1992 in Paris. Its title accurately reflects the domains to which Yvonne Choquet-Bruhat has made essential contributions. Since the rise of General Relativity, the geometry of Manifolds has become a non-trivial part of space-time physics. At the same time, Functional Analysis has been of enormous importance in Quantum Mechanics, and Quantum Field Theory. Its role becomes decisive when one considers the global behaviour of solutions of differential systems on manifolds. In this sense, Genera...
The ambition of this volume is twofold: to provide a comprehensive overview of the field and to serve as an indispensable reference work for anyone who wants to work in it. For example, any philosopher who hopes to make a contribution to the topic of the classical-quantum correspondence will have to begin by consulting Klaas Landsman's chapter. The organization of this volume, as well as the choice of topics, is based on the conviction that the important problems in the philosophy of physics arise from studying the foundations of the fundamental theories of physics. It follows that there is no sharp line to be drawn between philosophy of physics and physics itself. Some of the best work in t...
This book gives an account of two celebrated theorems of Gelfand and Naimark for commutative C*-algebras, their tangled history, generalizations and applications, in a form accessible to mathematicians working in various applied fields, and also to students of pure and applied mathematics.
Infinite dimensional representation theory blossomed in the latter half of the twentieth century, developing in part with quantum mechanics and becoming one of the mainstays of modern mathematics. Fundamentals of Infinite Dimensional Representation Theory provides an accessible account of the topics in analytic group representation theory and operator algebras from which much of the subject has evolved. It presents new and old results in a coherent and natural manner and studies a number of tools useful in various areas of this diversely applied subject. From Borel spaces and selection theorems to Mackey's theory of induction, measures on homogeneous spaces, and the theory of left Hilbert algebras, the author's self-contained treatment allows readers to choose from a wide variety of topics and pursue them independently according to their needs. Beyond serving as both a general reference and as a text for those requiring a background in group-operator algebra representation theory, for careful readers, this monograph helps reveal not only the subject's utility, but also its inherent beauty.
This 2013 book, now OA, offers a definitive review of mathematical aspects of quantization and quantum field theory.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 3 returns to the themes of Part 1 by discussing pointwise limits (going beyond the usual focus on the Hardy-Littlewood maximal function by including ergodic theorems and martingale convergence), harmonic functions and potential theory, frames and wavelets, spaces (including bounded mean oscillation (BMO)) and, in the final chapter, lots of inequalities, including Sobolev spaces, Calderon-Zygmund estimates, and hypercontractive semigroups.
This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields. First full treatment of the subject and its applications Written by the pioneer of this field Broad applications in mathematics Of interest across most fields Ideal as an introduction and survey Examples treated include: the space of Penrose tilings the space of leaves of a foliation the space of irreducible unitary representations of a discrete group the phase space in quantum mechanics the Brillouin zone in the quantum Hall effect A model of space time
This volume contains contributions from the meeting held in honour of G.F. Dell'Antonio for his sixtieth birthday. The topics covered include the theory of classical and quantum dynamical systems and related mathematical disciplines such as functional and stochastic analysis, operator algebras etc. The contributions by leading specialists survey recent developments in Hamiltonian dynamics, non-commutative integration, supersymmetric theories, spin glass theory and other subjects in mathematical physics.
This book is primarily intended for Mathematicians, but students in the physical sciences will find here information not usually available in physics texts.The main aim of this book is to provide a unified mathematical account of the conceptual foundations of 20th-Century Physics, in a form suitable for a one-year survey course in Mathematics or Mathematical Physics. Emphasis is laid on the interlocked historical development of mathematical and physical ideas.
Modern astronomical research faces a vast range of statistical issues which have spawned a revival in methodological activity among astronomers. The Statistical Challenges in Modern Astronomy II conference brought astronomers and statisticians together to discuss methodological issues of common interest. Time series analysis, image analysis, Bayesian methods, Poisson processes, nonlinear regression, maximum likelihood, multivariate classification, and wavelet and multiscale analyses were all important themes. Many problems were introduced at the conference in the context of large-scale astronomical projects including LIGO, AXAF, XTE, Hipparcos, and digitised sky surveys. As such, this volume will be of interest to researchers and advanced students in both fields - astronomers seeking exposure to recent developments in statistics, and statisticians interested in confronting new problems.