Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Models for Smooth Infinitesimal Analysis
  • Language: en
  • Pages: 401

Models for Smooth Infinitesimal Analysis

The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.

Algebraic Set Theory
  • Language: en
  • Pages: 136

Algebraic Set Theory

This book offers a new algebraic approach to set theory. The authors introduce a particular kind of algebra, the Zermelo-Fraenkel algebras, which arise from the familiar axioms of Zermelo-Fraenkel set theory. Furthermore, the authors explicitly construct these algebras using the theory of bisimulations. Their approach is completely constructive, and contains both intuitionistic set theory and topos theory. In particular it provides a uniform description of various constructions of the cumulative hierarchy of sets in forcing models, sheaf models and realizability models. Graduate students and researchers in mathematical logic, category theory and computer science should find this book of great interest, and it should be accessible to anyone with a background in categorical logic.

Introduction to Foliations and Lie Groupoids
  • Language: en
  • Pages: 173

Introduction to Foliations and Lie Groupoids

  • Type: Book
  • -
  • Published: 2003
  • -
  • Publisher: Unknown

This book gives a quick introduction to the theory of foliations and Lie groupoids. It is based on the authors' extensive teaching experience and contains numerous examples and exercises making it ideal either for independent study or as the basis of a graduate course.

Sheaves in Geometry and Logic
  • Language: en
  • Pages: 627

Sheaves in Geometry and Logic

  • Type: Book
  • -
  • Published: 1992
  • -
  • Publisher: Unknown

An introduction to the theory of toposes which begins with illustrative examples and goes on to explain the underlying ideas of topology and sheaf theory as well as the general theory of elementary toposes and geometric morphisms and their relation to logic.

Sets, Models and Proofs
  • Language: en
  • Pages: 141

Sets, Models and Proofs

  • Type: Book
  • -
  • Published: 2018-12-06
  • -
  • Publisher: Springer

This textbook provides a concise and self-contained introduction to mathematical logic, with a focus on the fundamental topics in first-order logic and model theory. Including examples from several areas of mathematics (algebra, linear algebra and analysis), the book illustrates the relevance and usefulness of logic in the study of these subject areas. The authors start with an exposition of set theory and the axiom of choice as used in everyday mathematics. Proceeding at a gentle pace, they go on to present some of the first important results in model theory, followed by a careful exposition of Gentzen-style natural deduction and a detailed proof of Gödel’s completeness theorem for first-order logic. The book then explores the formal axiom system of Zermelo and Fraenkel before concluding with an extensive list of suggestions for further study. The present volume is primarily aimed at mathematics students who are already familiar with basic analysis, algebra and linear algebra. It contains numerous exercises of varying difficulty and can be used for self-study, though it is ideally suited as a text for a one-semester university course in the second or third year.

Classifying Spaces and Classifying Topoi
  • Language: en
  • Pages: 100

Classifying Spaces and Classifying Topoi

  • Type: Book
  • -
  • Published: 2006-11-14
  • -
  • Publisher: Springer

This monograph presents a new, systematic treatment of the relation between classifying topoi and classifying spaces of topological categories. Using a new generalized geometric realization which applies to topoi, a weak homotopy equival- ence is constructed between the classifying space and the classifying topos of any small (topological) category. Topos theory is then applied to give an answer to the question of what structures are classified by "classifying" spaces. The monograph should be accessible to anyone with basic knowledge of algebraic topology, sheaf theory, and a little topos theory.

Topoi
  • Language: en
  • Pages: 578

Topoi

A classic exposition of a branch of mathematical logic that uses category theory, this text is suitable for advanced undergraduates and graduate students and accessible to both philosophically and mathematically oriented readers.

Homotopy Type Theory: Univalent Foundations of Mathematics
  • Language: en
  • Pages: 484

Homotopy Type Theory: Univalent Foundations of Mathematics

None

Higher Structures in Topology, Geometry, and Physics
  • Language: en
  • Pages: 332

Higher Structures in Topology, Geometry, and Physics

This volume contains the proceedings of the AMS Special Session on Higher Structures in Topology, Geometry, and Physics, held virtually on March 26–27, 2022. The articles give a snapshot survey of the current topics surrounding the mathematical formulation of field theories. There is an intricate interplay between geometry, topology, and algebra which captures these theories. The hallmark are higher structures, which one can consider as the secondary algebraic or geometric background on which the theories are formulated. The higher structures considered in the volume are generalizations of operads, models for conformal field theories, string topology, open/closed field theories, BF/BV formalism, actions on Hochschild complexes and related complexes, and their geometric and topological aspects.

Categories for the Working Mathematician
  • Language: en
  • Pages: 320

Categories for the Working Mathematician

An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.