You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The new research area of genomics-inspired network biology lacks an introductory book that enables both physical/computational scientists and biologists to obtain a general yet sufficiently rigorous perspective of current thinking. Filling this gap, Introduction to Biological Networks provides a thorough introduction to genomics-inspired network bi
As the tools and techniques of structural biophysics assume greater roles in biological research and a range of application areas, learning how proteins behave becomes crucial to understanding their connection to the most basic and important aspects of life. With more than 350 color images throughout, Introduction to Proteins: Structure, Function, and Motion presents a unified, in-depth treatment of the relationship between the structure, dynamics, and function of proteins. Taking a structural–biophysical approach, the authors discuss the molecular interactions and thermodynamic changes that transpire in these highly complex molecules. The text incorporates various biochemical, physical, f...
This Festschrift volume, published in honor of John Mylopoulos on the occasion of his retirement from the University of Toronto, contains 25 high-quality papers, written by leading scientists in the field of conceptual modeling. The volume has been divided into six sections. The first section focuses on the foundations of conceptual modeling and contains material on ontologies and knowledge representation. The four sections on software and requirements engineering, information systems, information integration, and web and services, represent the chief current application domains of conceptual modeling. Finally, the section on implementations concentrates on projects that build tools to support conceptual modeling. With its in-depth coverage of diverse topics, this book could be a useful companion to a course on conceptual modeling.
This text presents the modeling, analysis, and design methods for systems biology. It discusses how to examine experimental data to learn about mathematical models, develop efficient abstraction and simulation methods to analyze these models, and use analytical methods to design new circuits. The author reviews basic molecular biology and biochemistry principles, covers several methods for modeling and analyzing genetic circuits, and uses phage lambda as an example throughout to help illustrate the methods. He also explores the emerging area of synthetic biology. iBioSim software, lecture slides, and a password-protected solutions manual are available on the author's website.
Current PPI databases do not offer sophisticated querying interfaces and especially do not integrate existing information about proteins. Current algorithms for PIN analysis use only topological information, while emerging approaches attempt to exploit the biological knowledge related to proteins and kinds of interaction, e.g. protein function, localization, structure, described in Gene Ontology or PDB. The book discusses technologies, standards and databases for, respectively, generating, representing and storing PPI data. It also describes main algorithms and tools for the analysis, comparison and knowledge extraction from PINs. Moreover, some case studies and applications of PINs are also discussed.
Bioinformatics and Computational Biology: Technological Advancements, Applications and Opportunities is an invaluable resource for general and applied researchers who analyze biological data that is generated, at an unprecedented rate, at the global level. After careful evaluation of the requirements for current trends in bioinformatics and computational biology, it is anticipated that the book will provide an insightful resource to the academic and scientific community. Through a myriad of computational resources, algorithms, and methods, it equips readers with the confidence to both analyze biological data and estimate predictions. The book offers comprehensive coverage of the most essenti...
Introduction to Bio-Ontologies explores the computational background of ontologies. Emphasizing computational and algorithmic issues surrounding bio-ontologies, this self-contained text helps readers understand ontological algorithms and their applications.The first part of the book defines ontology and bio-ontologies. It also explains the importan
While numerous advanced statistical approaches have recently been developed for quantitative trait loci (QTL) mapping, the methods are scattered throughout the literature. Statistical Methods for QTL Mapping brings together many recent statistical techniques that address the data complexity of QTL mapping. After introducing basic genetics topics an
A Step-by-Step Guide to Describing Biomolecular StructureComputational and Visualization Techniques for Structural Bioinformatics Using Chimera shows how to perform computations with Python scripts in the Chimera environment. It focuses on the three core areas needed to study structural bioinformatics: biochemistry, mathematics, and computation.Und
This book constitutes the refereed proceedings of the 6th International Conference on Case-Based Reasoning, ICCBR 2005, held in Chicago, IL, USA, in August 2005. The 19 revised full research papers and 26 revised poster papers presented together with the abstracts of 3 invited talks were carefully reviewed and selected from 74 submissions. The papers address all current foundational, theoretical and research aspects of case-based reasoning as well as advanced applications either with innovative commercial deployment or practical, social, environmental or economic significance.