You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume is a collection of notes from lectures given at the 2008 Clay Mathematics Institute Summer School, held in Zürich, Switzerland. The lectures were designed for graduate students and mathematicians within five years of the Ph.D., and the main focus of the program was on recent progress in the theory of evolution equations. Such equations lie at the heart of many areas of mathematical physics and arise not only in situations with a manifest time evolution (such as linear and nonlinear wave and Schrödinger equations) but also in the high energy or semi-classical limits of elliptic problems. The three main courses focused primarily on microlocal analysis and spectral and scattering ...
The book presents state-of-the-art results on the analysis of the Einstein equations and the large scale structure of their solutions. It combines in a unique way introductory chapters and surveys of various aspects of the analysis of the Einstein equations in the large. It discusses applications of the Einstein equations in geometrical studies and the physical interpretation of their solutions. Open problems concerning analytical and numerical aspects of the Einstein equations are pointed out. Background material on techniques in PDE theory, differential geometry, and causal theory is provided.
Most people tend to view number theory as the very paradigm of pure mathematics. With the advent of computers, however, number theory has been finding an increasing number of applications in practical settings, such as in cryptography, random number generation, coding theory, and even concert hall acoustics. Yet other applications are still emerging - providing number theorists with some major new areas of opportunity. The 1996 IMA summer program on Emerging Applications of Number Theory was aimed at stimulating further work with some of these newest (and most attractive) applications. Concentration was on number theory's recent links with: (a) wave phenomena in quantum mechanics (more specifically, quantum chaos); and (b) graph theory (especially expander graphs and related spectral theory). This volume contains the contributed papers from that meeting and will be of interest to anyone intrigued by novel applications of modern number-theoretical techniques.
This volume presents the contributions from the international conference held at the University of Missouri at Columbia, marking Professor Lange's 70th birthday and his retirement from the university. The principal purpose of the conference was to focus on continued fractions as a common interdisciplinary theme bridging gaps between a large number of fields-from pure mathematics to mathematical physics and approximation theory. Evident in this work is the widespread influence of continued fractions in a broad range of areas of mathematics and physics, including number theory, elliptic functions, Padé approximations, orthogonal polynomials, moment problems, frequency analysis, and regularity properties of evolution equations. Different areas of current research are represented. The lectures at the conference and the contributions to this volume reflect the wide range of applicability of continued fractions in mathematics and the applied sciences.
Explore spectacular advances in contemporary physics with this unique celebration of the centennial of Einstein's discovery of general relativity.
Marcel Grossmann Meetings are formed to further the development of General Relativity by promoting theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. In these meetings are discussed recent developments in classical and quantum gravity, general relativity and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, with the main objective of gathering scientists from diverse backgrounds for deepening the understanding of spacetime structure and reviewing the status of test-experiments for Einstein's theory of gravitation. The range o...
This volume is based on the AMS Special Session on Harmonic Analysis and Partial Differential Equations and the AMS Special Session on Nonlinear Analysis of Partial Differential Equations, both held March 12-13, 2011, at Georgia Southern University, Statesboro, Georgia, as well as the JAMI Conference on Analysis of PDEs, held March 21-25, 2011, at Johns Hopkins University, Baltimore, Maryland. These conferences all concentrated on problems of current interest in harmonic analysis and PDE, with emphasis on the interaction between them. This volume consists of invited expositions as well as research papers that address prospects of the recent significant development in the field of analysis an...
The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of ...
This memoir is devoted to the proof of a well-posedness result for the gravity water waves equations, in arbitrary dimension and in fluid domains with general bottoms, when the initial velocity field is not necessarily Lipschitz. Moreover, for two-dimensional waves, the authors consider solutions such that the curvature of the initial free surface does not belong to L2. The proof is entirely based on the Eulerian formulation of the water waves equations, using microlocal analysis to obtain sharp Sobolev and Hölder estimates. The authors first prove tame estimates in Sobolev spaces depending linearly on Hölder norms and then use the dispersive properties of the water-waves system, namely Strichartz estimates, to control these Hölder norms.
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program.This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.