You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In 1945, very early in the history of the development of a rigorous analytical theory of probability, Feller (1945) wrote a paper called “The fundamental limit theorems in probability” in which he set out what he considered to be “the two most important limit theorems in the modern theory of probability: the central limit theorem and the recently discovered ... ‘Kolmogoroff’s cel ebrated law of the iterated logarithm’ ”. A little later in the article he added to these, via a charming description, the “little brother (of the central limit theo rem), the weak law of large numbers”, and also the strong law of large num bers, which he considers as a close relative of the law of...
Stats Inference Stochasic Process
The first edition of Theory of Rank Tests (1967) has been the precursor to a unified and theoretically motivated treatise of the basic theory of tests based on ranks of the sample observations. For more than 25 years, it helped raise a generation of statisticians in cultivating their theoretical research in this fertile area, as well as in using these tools in their application oriented research. The present edition not only aims to revive this classical text by updating the findings but also by incorporating several other important areas which were either not properly developed before 1965 or have gone through an evolutionary development during the past 30 years. This edition therefore aims to fulfill the needs of academic as well as professional statisticians who want to pursue nonparametrics in their academic projects, consultation, and applied research works. - Asymptotic Methods - Nonparametrics - Convergence of Probability Measures - Statistical Inference
This is one of two volumes that sets forth invited papers presented at the International Indian Statistical Association Conference. This volume emphasizes advancements in methodology and applications of probability and statistics. The chapters, representing the ideas of vanguard researchers on the topic, present several different subspecialties, including applied probability, models and applications, estimation and testing, robust inference, regression and design and sample size methodology. The text also fully describes the applications of these new ideas to industry, ecology, biology, health, economics and management. Researchers and graduate students in mathematical analysis, as well as probability and statistics professionals in industry, will learn much from this volume.
Information Theory: Coding Theorems for Discrete Memoryless Systems presents mathematical models that involve independent random variables with finite range. This three-chapter text specifically describes the characteristic phenomena of information theory. Chapter 1 deals with information measures in simple coding problems, with emphasis on some formal properties of Shannon's information and the non-block source coding. Chapter 2 describes the properties and practical aspects of the two-terminal systems. This chapter also examines the noisy channel coding problem, the computation of channel capacity, and the arbitrarily varying channels. Chapter 3 looks into the theory and practicality of multi-terminal systems. This book is intended primarily for graduate students and research workers in mathematics, electrical engineering, and computer science.
The urgent need to describe and to solve certain problems connected to extreme phenomena in various areas of applications has been of decisive influence on the vital development of extreme value theory. After the pioneering work of M. Frechet (1927) and of R.A. Fisher and L.R.C. Tippett (1928), who discovered the limiting distributions of extremes, the importance of mathematical concepts of extreme behavior in applications was impressively demonstrated by statisticians like E.J. Gumbel and W. Weibull. The predominant role of applied aspects in that early period may be highlighted by the fact that two of the "Fisher-Tippett asymptotes" also carry the names of Gumbel and Weibull. In the last y...
A self-contained treatment of stochastic processes arising from models for queues, insurance risk, and dams and data communication, using their sample function properties. The approach is based on the fluctuation theory of random walks, L vy processes, and Markov-additive processes, in which Wiener-Hopf factorisation plays a central role. This second edition includes results for the virtual waiting time and queue length in single server queues, while the treatment of continuous time storage processes is thoroughly revised and simplified. With its prerequisite of a graduate-level course in probability and stochastic processes, this book can be used as a text for an advanced course on applied probability models.