You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is an introduction to Hopf algebras in braided monoidal categories with applications to Hopf algebras in the usual sense. The main goal of the book is to present from scratch and with complete proofs the theory of Nichols algebras (or quantum symmetric algebras) and the surprising relationship between Nichols algebras and generalized root systems. In general, Nichols algebras are not classified by Cartan graphs and their root systems. However, extending partial results in the literature, the authors were able to associate a Cartan graph to a large class of Nichols algebras. This allows them to determine the structure of right coideal subalgebras of Nichols systems which generalize ...
View the abstract.
This monograph presents a systematic theory of weak solutions in Hilbert-Sobolev spaces of initial-boundary value problems for parabolic systems of partial differential equations with general essential and natural boundary conditions and minimal hypotheses on coefficients. Applications to quasilinear systems are given, including local existence for large data, global existence near an attractor, the Leray and Hopf theorems for the Navier-Stokes equations and results concerning invariant regions. Supplementary material is provided, including a self-contained treatment of the calculus of Sobolev functions on the boundaries of Lipschitz domains and a thorough discussion of measurability considerations for elements of Bochner-Sobolev spaces. This book will be particularly useful both for researchers requiring accessible and broadly applicable formulations of standard results as well as for students preparing for research in applied analysis. Readers should be familiar with the basic facts of measure theory and functional analysis, including weak derivatives and Sobolev spaces. Prior work in partial differential equations is helpful but not required.
Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and strin...
The papers in this volume are based on the talks given at the conference on quantum groups dedicated to the memory of Joseph Donin, which was held at the Technion Institute, Haifa, Israel in July 2004. A survey of Donin's distinguished mathematical career is included. Several articles, which were directly influenced by the research of Donin and his colleagues, deal with invariant quantization, dynamical $R$-matrices, Poisson homogeneous spaces, and reflection equation algebras. The topics of other articles include Hecke symmetries, orbifolds, set-theoretic solutions to the pentagon equations, representations of quantum current algebras, unipotent crystals, the Springer resolution, the Fourier transform on Hopf algebras, and, as a change of pace, the combinatorics of smoothly knotted surfaces. The articles all contain important new contributions to their respective areas and will be of great interest to graduate students and research mathematicians interested in Hopf algebras, quantum groups, and applications. Information for our distributors: This book is copublished with Bar-Ilan University (Ramat-Gan, Israel).
Completion problems for operator matrices are concerned with the question of whether a partially specified operator matrix can be completed to form an operator of a desired type. The research devoted to this topic provides an excellent means to investigate the structure of operators. This book provides an overview of completion problems dealing with completions to different types of operators and can be considered as a natural extension of classical results concerned with matrix completions. The book assumes some basic familiarity with functional analysis and operator theory. It will be useful for graduate students and researchers interested in operator theory and the problem of matrix completions.
This book introduces a new research direction in set theory: the study of models of set theory with respect to their extensional overlap or disagreement. In Part I, the method is applied to isolate new distinctions between Borel equivalence relations. Part II contains applications to independence results in Zermelo–Fraenkel set theory without Axiom of Choice. The method makes it possible to classify in great detail various paradoxical objects obtained using the Axiom of Choice; the classifying criterion is a ZF-provable implication between the existence of such objects. The book considers a broad spectrum of objects from analysis, algebra, and combinatorics: ultrafilters, Hamel bases, transcendence bases, colorings of Borel graphs, discontinuous homomorphisms between Polish groups, and many more. The topic is nearly inexhaustible in its variety, and many directions invite further investigation.
This volume contains the proceedings of the Conference on Hopf Algebras and Tensor Categories, held July 4-8, 2011, at the University of Almeria, Almeria, Spain. The articles in this volume cover a wide variety of topics related to the theory of Hopf algebras and its connections to other areas of mathematics. In particular, this volume contains a survey covering aspects of the classification of fusion categories using Morita equivalence methods, a long comprehensive introduction to Hopf algebras in the category of species, and a summary of the status to date of the classification of Hopf algebras of dimensions up to 100. Among other topics discussed in this volume are a study of normalized class sum and generalized character table for semisimple Hopf algebras, a contribution to the classification program of finite dimensional pointed Hopf algebras, relations to the conjecture of De Concini, Kac, and Procesi on representations of quantum groups at roots of unity, a categorical approach to the Drinfeld double of a braided Hopf algebra via Hopf monads, an overview of Hom-Hopf algebras, and several discussions on the crossed product construction in different settings.
This volume contains the proceedings of the scientific session “Hopf Algebras and Tensor Categories”, held from July 27–28, 2017, at the Mathematical Congress of the Americas in Montreal, Canada. Papers highlight the latest advances and research directions in the theory of tensor categories and Hopf algebras. Primary topics include classification and structure theory of tensor categories and Hopf algebras, Gelfand-Kirillov dimension theory for Nichols algebras, module categories and weak Hopf algebras, Hopf Galois extensions, graded simple algebras, and bialgebra coverings.
This book is an introduction to techniques and results in diagrammatic algebra. It starts with abstract tensors and their categorifications, presents diagrammatic methods for studying Frobenius and Hopf algebras, and discusses their relations with topological quantum field theory and knot theory. The text is replete with figures, diagrams, and suggestive typography that allows the reader a glimpse into many higher dimensional processes. The penultimate chapter summarizes the previous material by demonstrating how to braid 3- and 4- dimensional manifolds into 5- and 6-dimensional spaces. The book is accessible to post-qualifier graduate students, and will also be of interest to algebraists, topologists and algebraic topologists who would like to incorporate diagrammatic techniques into their research.