Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

On the Spectra of Quantum Groups
  • Language: en
  • Pages: 104

On the Spectra of Quantum Groups

Joseph and Hodges-Levasseur (in the A case) described the spectra of all quantum function algebras on simple algebraic groups in terms of the centers of certain localizations of quotients of by torus invariant prime ideals, or equivalently in terms of orbits of finite groups. These centers were only known up to finite extensions. The author determines the centers explicitly under the general conditions that the deformation parameter is not a root of unity and without any restriction on the characteristic of the ground field. From it he deduces a more explicit description of all prime ideals of than the previously known ones and an explicit parametrization of .

Commutative Algebra and Noncommutative Algebraic Geometry
  • Language: en
  • Pages: 303

Commutative Algebra and Noncommutative Algebraic Geometry

This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 2 focuses on the most recent research.

Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics
  • Language: en
  • Pages: 296

Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics

This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.

Hypergeometry, Integrability and Lie Theory
  • Language: en
  • Pages: 362

Hypergeometry, Integrability and Lie Theory

This volume contains the proceedings of the virtual conference on Hypergeometry, Integrability and Lie Theory, held from December 7–11, 2020, which was dedicated to the 50th birthday of Jasper Stokman. The papers represent recent developments in the areas of representation theory, quantum integrable systems and special functions of hypergeometric type.

Representation Theory, Mathematical Physics, and Integrable Systems
  • Language: en
  • Pages: 652

Representation Theory, Mathematical Physics, and Integrable Systems

Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume – compiled on the occasion of his 60th birthday – are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and strin...

Recent Advances in Noncommutative Algebra and Geometry
  • Language: en
  • Pages: 288

Recent Advances in Noncommutative Algebra and Geometry

This volume contains the proceedings of the conference Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry, held from June 20–24, 2022, at the University of Washington, Seattle, in honor of S. Paul Smith's 65th birthday. The articles reflect the wide interests of Smith and provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Hopf algebras and quantum groups, the elliptic algebras of Feigin and Odesskii, Calabi-Yau algebras, Artin-Schelter regular algebras, deformation theory, and Lie theory. In addition to original research contributions the volume includes an introductory essay reviewing Smith's research contributions in these fields, and several survey articles.

Hopf Algebras and Root Systems
  • Language: en
  • Pages: 606

Hopf Algebras and Root Systems

This book is an introduction to Hopf algebras in braided monoidal categories with applications to Hopf algebras in the usual sense. The main goal of the book is to present from scratch and with complete proofs the theory of Nichols algebras (or quantum symmetric algebras) and the surprising relationship between Nichols algebras and generalized root systems. In general, Nichols algebras are not classified by Cartan graphs and their root systems. However, extending partial results in the literature, the authors were able to associate a Cartan graph to a large class of Nichols algebras. This allows them to determine the structure of right coideal subalgebras of Nichols systems which generalize ...

Advanced Topics in Linear Algebra
  • Language: en
  • Pages: 423

Advanced Topics in Linear Algebra

  • Type: Book
  • -
  • Published: 2011-09-16
  • -
  • Publisher: OUP USA

This book develops the Weyr matrix canonical form, a largely unknown cousin of the Jordan form. It explores novel applications, including include matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry. Module theory and algebraic geometry are employed but with self-contained accounts.

Representations and Nilpotent Orbits of Lie Algebraic Systems
  • Language: en
  • Pages: 563

Representations and Nilpotent Orbits of Lie Algebraic Systems

This volume, a celebration of Anthony Joseph’s fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled “Algebraic Modes of Representations,” the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including: Primitive ideals Invariant theory Geometry of Lie group actions Quantum affine algebras Yangians Categorification Vertex algebras This volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.

Superintegrability in Classical and Quantum Systems
  • Language: en
  • Pages: 362

Superintegrability in Classical and Quantum Systems

Superintegrable systems are integrable systems (classical and quantum) that have more integrals of motion than degrees of freedom. Such systems have many interesting properties. This title is based on the Workshop on Superintegrability in Classical and Quantum Systems organized by the Centre de Recherches Mathematiques in Montreal (Quebec).