You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Functional Equations and Inequalities with Applications presents a comprehensive, nearly encyclopedic, study of the classical topic of functional equations. This self-contained monograph explores all aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis. Each chapter examines a particular family of equations and gives an in-depth study of its applications as well as examples and exercises to support the material.
Provides engineers and applied scientists with some selected results of functional equations and their applications, with the intention of changing the way they think about mathematical modelling. Many of the proofs are simplified or omitted, so as not to bore or confuse engineers. Functional equati
Marek Kuczma was born in 1935 in Katowice, Poland, and died there in 1991. After finishing high school in his home town, he studied at the Jagiellonian University in Kraków. He defended his doctoral dissertation under the supervision of Stanislaw Golab. In the year of his habilitation, in 1963, he obtained a position at the Katowice branch of the Jagiellonian University (now University of Silesia, Katowice), and worked there till his death. Besides his several administrative positions and his outstanding teaching activity, he accomplished excellent and rich scientific work publishing three monographs and 180 scientific papers. He is considered to be the founder of the celebrated Polish scho...
A cohesive and comprehensive account of the modern theory of iterative functional equations. Many of the results included have appeared before only in research literature, making this an essential volume for all those working in functional equations and in such areas as dynamical systems and chaos, to which the theory is closely related. The authors introduce the reader to the theory and then explore the most recent developments and general results. Fundamental notions such as the existence and uniqueness of solutions to the equations are stressed throughout, as are applications of the theory to such areas as branching processes, differential equations, ergodic theory, functional analysis and geometry. Other topics covered include systems of linear and nonlinear equations of finite and infinite ORD various function classes, conjugate and commutable functions, linearization, iterative roots of functions, and special functional equations.
"This book is highly recommended for all those whose interests lie in the fields that deal with any kind of information measures. It will also find readers in the field of functional analysis..".Mathematical Reviews
Numerous detailed proofs highlight this treatment of functional equations. Starting with equations that can be solved by simple substitutions, the book then moves to equations with several unknown functions and methods of reduction to differential and integral equations. Also includes composite equations, equations with several unknown functions of several variables, vector and matrix equations, more. 1966 edition.
This book is devoted to the possible applications of spectral analysis and spectral synthesis for convolution type functional equations on topological abelian groups. The solution space of convolution type equations has been synthesized in the sense that the general solutions are built up from exponential monomial solutions. In particular, equivalence of systems of functional equations can be tested. This leads to a unified treatment of classical equations and to interesting new results.
Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as p
How should information be measured? That is the motivating question for this book. The concept of information has become so pervasive that people regularly refer to the present era as the Information Age. Information takes many forms: oral, written, visual, electronic, mechanical, electromagnetic, etc. Many recent inventions deal with the storage, transmission, and retrieval of information. From a mathematical point of view, the most basic problem for the field of information theory is how to measure information. In this book we consider the question: What are the most desirable properties for a measure of information to possess? These properties are then used to determine explicitly the most “natural” (i.e. the most useful and appropriate) forms for measures of information.This important and timely book presents a theory which is now essentially complete. The first book of its kind since 1975, it will bring the reader up to the current state of knowledge in this field.
This volume aims at surveying and exposing the main ideas and principles accumulated in a number of theories of Mathematical Analysis. The underlying methodological principle is to develop a unified approach to various kinds of problems. In the papers presented, outstanding research scientists discuss the present state of the art and the broad spectrum of topics in the theory.