You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.
The creative process of mathematics, both historically and individually, may be described as a counterpoint between theorems and examples. Al though it would be hazardous to claim that the creation of significant examples is less demanding than the development of theory, we have dis covered that focusing on examples is a particularly expeditious means of involving undergraduate mathematics students in actual research. Not only are examples more concrete than theorems-and thus more accessible-but they cut across individual theories and make it both appropriate and neces sary for the student to explore the entire literature in journals as well as texts. Indeed, much of the content of this book...
The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and teachers. Volume 1 focuses on the analysis of real-valued functions of a real variable. This second volume goes on to consider metric and topological spaces. Topics such as completeness, compactness and connectedness are developed, with emphasis on their applications to analysis. This leads to the theory of functions of several variables. Differential manifolds in Euclidean space are introduced in a final chapter, which includes an account of Lagrange multipliers and a detailed proof of the divergence theorem. Volume 3 covers complex analysis and the theory of measure and integration.
None
Young measures are now a widely used tool in the Calculus of Variations, in Control Theory, in Probability Theory and other fields. They are known under different names such as "relaxed controls", "fuzzy random variables" and many other names. This monograph provides a unified presentation of the theory, along with new results and applications in various fields. It can serve as a reference on the subject. Young measures are presented in a general setting which includes finite and for the first time infinite dimensional spaces: the fields of applications of Young measures (Control Theory, Calculus of Variations, Probability Theory...) are often concerned with problems in infinite dimensional ...
This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.
Celebrating the work of world-renowned mathematician Sam B. Nadler, Jr., this reference examines the most recent advances in the analysis of continua. The book offers articles on the contributions of Professor Nadler, theorems on the structure and uniqueness of hyperspaces, results on the dynamics of solenoids, examples involving inverse limits of
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
An introduction to topology and the language of mathematics that works. Ideal for the undergraduate student with little to no background in the subject. Excellent for the advanced high school mathematics student, interested in a taste of next steps. Also useful to graduate students looking for a refresher or fresh take on their foundation in the topics.