You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition.
Orignally published: Englewood Cliffs, N.J.: Prentice-Hall, 1962.
This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.
Confusing Textbooks? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's Outlines. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
This presentation on the basics of Boolean algebra has ranked among the fundamental books on this important subject in mathematics and computing science since its initial publication in 1963. Concise and informal as well as systematic, the text draws upon lectures delivered by Professor Halmos at the University of Chicago to cover many topics in brief individual chapters. The approach is suitable for advanced undergraduates and graduate students in mathematics. Starting with Boolean rings and algebras, the treatment examines fields of sets, regular open sets, elementary relations, infinite operations, subalgebras, homomorphisms, free algebras, ideals and filters, and the homomorphism theorem. Additional topics include measure algebras, Boolean spaces, the representation theorem, duality for ideals and for homomorphisms, Boolean measure spaces, isomorphisms of factors, projective and injective algebras, and many other subjects. Several chapters conclude with stimulating exercises; the solutions are not included.
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Concise text begins with overview of elementary mathematical concepts and outlines theory of Boolean algebras; defines operators for elimination, division, and expansion; covers syllogistic reasoning, solution of Boolean equations, functional deduction. 1990 edition.
This book is an informal though systematic series of lectures on Boolean algebras. It contains background chapters on topology and continuous functions and includes hundreds of exercises as well as a solutions manual.
Over the last few decades, linear algebra has become more relevant than ever. Applications have increased not only in quantity but also in diversity, with linear systems being used to solve problems in chemistry, engineering, economics, nutrition, urban planning, and more. DeFranza and Gagliardi introduce students to the topic in a clear, engaging, and easy-to-follow manner. Topics are developed fully before moving on to the next through a series of natural connections. The result is a solid introduction to linear algebra for undergraduates’ first course.