You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Domain decomposition is an active research area concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models of natural and engineered systems. The present volume sets forth new contributions in areas of numerical analysis, computer science, scientific and industrial applications, and software development.
This book deals with discretization techniques for partial differential equations of elliptic, parabolic and hyperbolic type. It provides an introduction to the main principles of discretization and gives a presentation of the ideas and analysis of advanced numerical methods in the area. The book is mainly dedicated to finite element methods, but it also discusses difference methods and finite volume techniques. Coverage offers analytical tools, properties of discretization techniques and hints to algorithmic aspects. It also guides readers to current developments in research.
Advances in Heat Transfer fills the information gap between regularly scheduled journals and university-level textbooks by providing wide-ranging and in-depth review articles. Put simply, this book is essential reading for all mechanical, chemical and industrial engineers working in the field of heat transfer in graduate schools or industry. The articles, which serve as a broad review for experts in the field, will also be of great interest to non-specialists who need to keep up-to-date with the results of the latest research. - Provides an overview of review articles on topics of current interest - Bridges the gap between academic researchers and practitioners in industry - A long-running and prestigious series
This book presents the perspectives of nanotechnology educators from around the world. Experts present the pressing challenges of teaching nanoscience and engineering to students in all levels of education, postsecondary and informal environments. The book was inspired by the 2014 NSF workshop for Nanoscience and Engineering Education. Since nanotechnology is a relatively new field, authors present recommendations for designing nanotechnology education programs. The chapters describe methods to teach specific topics, such as probe microscopy, size and scale, and nanomaterial safety, in classrooms around the world. Other chapters describe the ways that organizations like NNIN and the NISE Network have influenced informal nanotechnology education. Information technology plays a growing role in all types of education and several chapters are devoted to describing ways how educators can use online curricula for teaching nanotechnology to students from preschool to graduate school.
This book analyzes the impact of scientific computing in science and society over the coming decades. It presents advanced methods that can provide new possibilities to solve scientific problems and study important phenomena in society. The chapters cover Scientific computing as the third paradigm of science as well as the impact of scientific computing on natural sciences, environmental science, economics, social science, humanistic science, medicine, and engineering. Moreover, the book investigates scientific computing in high performance computing, quantum computing, and artificial intelligence environment and what it will be like in the 2030s and 2040s.
In a remarkably short time, the field of inequality problems has seen considerable development in mathematics and theoretical mechanics. Applied mechanics and the engineering sciences have also benefitted from these developments in that open problems have been treated and entirely new classes of problems have been formulated and solved. This book is an outgrowth of seven years of seminars and courses on inequality problems in mechanics for a variety of audiences in the Technical University of Aachen, the Aristotle University of Thessaloniki, the University of Hamburg and the Technical University of Milan. The book is intended for a variety of readers, mathematicians and engineers alike, as i...
Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.
Nonsmooth energy functions govern phenomena which occur frequently in nature and in all areas of life. They constitute a fascinating subject in mathematics and permit the rational understanding of yet unsolved or partially solved questions in mechanics, engineering and economics. This is the first book to provide a complete and rigorous presentation of the quasidifferentiability approach to nonconvex, possibly nonsmooth, energy functions, of the derivation and study of the corresponding variational expressions in mechanics, engineering and economics, and of their numerical treatment. The new variational formulations derived are illustrated by many interesting numerical problems. The techniqu...
This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-rein...