You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This new edition incorporates new developments in numerical methods for singularly perturbed differential equations, focusing on linear convection-diffusion equations and on nonlinear flow problems that appear in computational fluid dynamics.
This book deals with discretization techniques for partial differential equations of elliptic, parabolic and hyperbolic type. It provides an introduction to the main principles of discretization and gives a presentation of the ideas and analysis of advanced numerical methods in the area. The book is mainly dedicated to finite element methods, but it also discusses difference methods and finite volume techniques. Coverage offers analytical tools, properties of discretization techniques and hints to algorithmic aspects. It also guides readers to current developments in research.
This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers.
This book provides a gentle introduction to fractional Sobolev spaces which play a central role in the calculus of variations, partial differential equations, and harmonic analysis. The first part deals with fractional Sobolev spaces of one variable. It covers the definition, standard properties, extensions, embeddings, Hardy inequalities, and interpolation inequalities. The second part deals with fractional Sobolev spaces of several variables. The author studies completeness, density, homogeneous fractional Sobolev spaces, embeddings, necessary and sufficient conditions for extensions, Gagliardo-Nirenberg type interpolation inequalities, and trace theory. The third part explores some applic...
This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces ...
This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, ...
This volume will contain selected papers from the lectures held at the BAIL 2010 Conference, which took place from July 5th to 9th, 2010 in Zaragoza (Spain). The papers present significant advances in the modeling, analysis and construction of efficient numerical methods to solve boundary and interior layers appearing in singular perturbation problems. Special emphasis is put on the mathematical foundations of such methods and their application to physical models. Topics in scientific fields such as fluid dynamics, quantum mechanics, semiconductor modeling, control theory, elasticity, chemical reactor theory, and porous media are examined in detail.
The International Conference Zaragoza-Pau on Mathematics and its Applications was organized by the Departamento de Matemática Aplicada, the Departamento de Métodos Estadísticos and the Departamento de Matemáticas, all of them from the Universidad de Zaragoza (Spain), and the Laboratoire de Mathématiques et de leurs Applications, from the Université de Pau et des Pays de l’Adour (France). This conference has been held every two years since 1989. The aim of this conference is to present recent advances in Applied Mathematics, Statistics and Pure Mathematics, putting special emphasis on subjects linked to petroleum engineering and environmental problems. The Fourteenth Conference took place in Jaca (Spain) from 12nd to 15th September 2016. During those four days, 99 mathematicians, coming from di erent universities, research institutes or the industrial sector, attended 14 plenary lectures, 62 contributed talks and a poster session with 4 posters. We note that in this edition there were 11 mini-symposia, two of them co-organized by colleagues from the Universidad de Zaragoza and the Université de Pau et des Pays de l’Adour.
THE ROUGH GUIDE TO PRAGUE is the insider's handbook to the Czech capital. Features include: Entertaining accounts of all the sights, from the vast castle complex to the modern art museum - plus excursions outside the city. Extensive listings of the best places to stay, eat and drink, and the last word on the city's nightlife. Incisive background on Prague's culture and history, ranging from new wave cinema to the story of the Velvet Revolution. Full-colour map section plus 20 other maps and plans.