You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This handbook brings together, under a single cover, all aspects of the chemistry, physics, and engineering of surfaces and interfaces of materials currently studied in academic and industrial research. It covers different experimental and theoretical aspects of surfaces and interfaces, their physical properties, and spectroscopic techniques that have been applied to a wide class of inorganic, organic, polymer, and biological materials. The diversified technological areas of surface science reflect the explosion of scientific information on surfaces and interfaces of materials and their spectroscopic characterization. The large volume of experimental data on chemistry, physics, and engineeri...
In-situ high-resolution electron microscopy is a modern and powerful technique in materials research, physics, and chemistry. In-situ techniques are hardly treated in textbooks of electron microscopy. Thus, there is a need to collect the present knowledge about the techniques and achievements of in-situ electron microscopy in one book. Since high-resolution electron microscopes are available in most modern laboratories of materials science, more and more scientists or students are starting to work on this subject.In this comprehensive volume, the most important techniques and achievements of in-situ high-resolution electron microscopy will be reviewed by renowned experts. Applications in several fields of materials science will also be demonstrated.
Navigating through an extensive compilation of surface modification reactions and processes for specific tribological results, this reference compiles detailed studies, many not found in other texts, on various residual stresses, reaction processes and mechanisms, heat treatment methods, plasma-based techniques, laser impingement, nanometer scale surface modification, and more. Surface Modification and Mechanisms: Friction, Stress, and Reaction Engineering offers guidelines for the consideration and design of wear and frictional performance and provides a unique understanding of surface structural changes that occur during various engineering procedures.
Detailing the properties of specific coatings, problems related to adhesion onto various substrates, and potential commercial applications, this text surveys up-to-date techniques involved in preparing intermetallic and ceramic coatings. The book features a list of selected applications covering the latest industrially available practices.
This volume comprises the Proceedings of the Yamada Conference IX on Dislocations in Solids, held in August 1984 in Tokyo. The purpose of the conference was two-fold: firstly to evaluate the increasing data on basic properties of dislocations and their interaction with other types of defects in solids and, secondly, to increase understanding of the material properties brought about by dislocation-related phenomena. Metals and alloys, semi-conductors and ions crystals were discussed. One of the important points of contention was the electronic state at the core of dislocation. Another was the dislocation model of amorphous structure.
This volume comprises the Proceedings of the Yamada Conference IX on Dislocations in Solids, held in August 1984 in Tokyo. The purpose of the conference was two-fold: firstly to evaluate the increasing data on basic properties of dislocations and their interaction with other types of defects in solids and, secondly, to increase understanding of the material properties brought about by dislocation-related phenomena. Metals and alloys, semi-conductors and ions crystals were discussed. One of the important points of contention was the electronic state at the core of dislocation. Another was the dislocation model of amorphous structure.
This volume focuses on the wealth of existing literature on physical metallurgy, and deals with materials in different states of order and the process of order evolution. It is a valuable reference by students and researchers in the field of materials science and metallurgy.
The importance of the nanoscale effects has been recognized in materials research for over fifty years, but it is only recently that advanced characterization and fabrication methods are enabling scientists to build structures atom-by-atom or molecule-by molecule. The understanding and control of the nanostructure has been, to a large extent, made possible by new atomistic analysis and characterization methods pioneered by transmission electron microscopy. Nano and Microstructural Design of Advanced Materials focuses on the effective use of such advanced analysis and characterization techniques in the design of materials. - Teaches effective use of advanced analysis and characterization methods at an atomistic level - Contains many supporting examples of materials in which such design concepts have been successfully applied
Casimir effects serve as primary examples of directly observable manifestations of the nontrivial properties of quantum fields, and as such are attracting increasing interest from quantum field theorists, particle physicists, and cosmologists. Furthermore, though very weak except at short distances, Casimir forces are universal in the sense that all material objects are subject to them. They are thus also an increasingly important part of the physics of atom-surface interactions, while in nanotechnology they are being investigated not only as contributors to ‘stiction’ but also as potential mechanisms for actuating micro-electromechanical devices. While the field of Casimir physics is ex...