You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"Part I reprints and reworks Huygens's On Reckoning in Games of Chance. Part II offers a thorough treatment of the mathematics of combinations and permutations, including the numbers since known as "Bernoulli numbers." In Part III, Bernoulli solves more complicated problems of games of chance using that mathematics. In the final part, Bernoulli's crowning achievement in mathematical probability becomes manifest he applies the mathematics of games of chance to the problems of epistemic probability in civil, moral, and economic matters, proving what we now know as the weak law of large numbers."
There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Cla...
'The Appeal of Insurance is an excellent collection that reflects a growing interest in insurance research within the social sciences. Clearly written and accessible to a variety of audiences, this is a volume of world-class scholarship.'-Luis Lobo-Guerrero, School of Politics, International Relations, and Philosophy, Keele University In the marketing of its products, the insurance industry has always depended on a considerable dose of moral exhortation and enlightened appeal. The Appeal of Insurance traces the ways in which insurance over the past three centuries, perhaps more than any other business, has grown in concert with a clientele largely of its own making. Faced with a public that ...
The manuscript gives a coherent and detailed account of the theory of series in the eighteenth and early nineteenth centuries. It provides in one place an account of many results that are generally to be found - if at all - scattered throughout the historical and textbook literature. It presents the subject from the viewpoint of the mathematicians of the period, and is careful to distinguish earlier conceptions from ones that prevail today.
From atom bombs to rebounding slinkies, open your eyes to the mathematical magic in the everyday. Mathematics isn't just for academics and scientists, a fact meteorologist and blogger Peter Lynch has spent the past several years proving through his Irish Times newspaper column and blog, That's Maths.Here, he shows how maths is all around us, with chapters on the beautiful equations behind designing a good concert venue, predicting the stock market and modelling the atom bomb, as well as playful meditations on everything from coin-stacking to cartography. If you left school thinking maths was boring, think again!
"Leonhard Euler and the Bernoullis is a fascinating tale of the Bernoulli family and Euler's association with them. Successful merchants in the 16th and 17th centuries, the Bernoullis were driven out of Antwerp during the persecution of the Huguenots and settled first in Frankfurt, and then in Basel, where one of the most remarkable mathematical dy
This magnificent book is the first comprehensive history of statistics from its beginnings around 1700 to its emergence as a distinct and mature discipline around 1900. Stephen M. Stigler shows how statistics arose from the interplay of mathematical concepts and the needs of several applied sciences including astronomy, geodesy, experimental psychology, genetics, and sociology. He addresses many intriguing questions: How did scientists learn to combine measurements made under different conditions? And how were they led to use probability theory to measure the accuracy of the result? Why were statistical methods used successfully in astronomy long before they began to play a significant role ...
This well-developed, accessible text details the historical development of the subject throughout. It also provides wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. This second edition contains two new chapters that provide a complete proof of the Mordel-Weil theorem for elliptic curves over the rational numbers and an overview of recent progress on the arithmetic of elliptic curves.
Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying...