You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Jacob Bekenstein, an Israeli physicist of the Hebrew University, Jerusalem, planted the seeds of a revolution of our understanding of space-time. Using conservative intuitive methods including time-old gedanken experiments, he discovered that black holes have thermodynamical properties such as entropy.Moreover, he found that their entropy was not extensive, unlike that of any other thermodynamical system considered before, but rather is proportional to the surface of their horizon. Furthermore, Bekenstein pioneered the study of black holes by focusing on their information content aspects. This led him to obtain bounds of a holographic nature on the amount of information that can be stored in a given region of space-time.This book contains a series of scientific and personal contributions by his contemporaries who recall the struggle against his ideas and then with them: the fate accompanying many revolutionary ideas. This is followed by original scientific contributions by many of the leaders of current research on black hole physics and holography. They have trodden his path and expanded it. The impact of Jacob Bekenstein's visionary ideas is just starting to be understood.
This volume consists of a selection of the Albert Einstein Memorial Lectures presented annually at the Israel Academy of Sciences and Humanities. Delivered by eminent scientists and scholars, including Nobel laureates, they cover a broad spectrum of subjects in physics, chemistry, life science, mathematics, historiography and social issues. This distinguished memorial lecture series was inaugurated by the Israel Academy of Sciences and Humanities following an international symposium held in Jerusalem in March 1979 to commemorate the centenary of Albert Einstein's birth. Considering that Einstein's interests, activities and influence were not restricted to theoretical physics but spanned broad fields affecting society and the welfare of humankind, it was felt that these memorial lectures should be addressed to scientists, scholars and erudite laypersons rather than to physicists alone.
ABSTRACT: Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman–DeWitt–Weinberg quantum gravity/Standard Model Theory of Everything (TOE) describing and unifying all the forces in physics, of which itself is also required by the known physical laws. With infinite...
In this book, Robert Wald provides a coherent, pedagogical introduction to the formulation of quantum field theory in curved spacetime. He begins with a treatment of the ordinary one-dimensional quantum harmonic oscillator, progresses through the construction of quantum field theory in flat spacetime to possible constructions of quantum field theory in curved spacetime, and, ultimately, to an algebraic formulation of the theory. In his presentation, Wald disentangles essential features of the theory from inessential ones (such as a particle interpretation) and clarifies relationships between various approaches to the formulation of the theory. He also provides a comprehensive, up-to-date account of the Unruh effect, the Hawking effect, and some of its ramifications. In particular, the subject of black hole thermodynamics, which remains an active area of research, is treated in depth. This book will be accessible to students and researchers who have had introductory courses in general relativity and quantum field theory, and will be of interest to scientists in general relativity and related fields.
This book focuses on one mechanism in black hole physics which has proven to be universal, multifaceted and with a rich phenomenology: rotational superradiance. This is an energy extraction process, whereby black holes can deposit their rotational energy in their surroundings, leading to Penrose processes, black-hole bombs, and even Hawking radiation. Black holes are key players in star formation mechanisms and as engines to some of the most violent events in our universe. Their simplicity and compactness make them perfect laboratories, ideally suited to probe new fields or modifications to the theory of gravity. Thus, black holes can also be used to probe some of the most important open pro...
In this XVII Course of the International School of Cosmology and Gravitation devoted to "ADVANCES IN THE INTERPLAY BETWEEN QUANTUM AND GRAVITY PHYSICS" we have considered different aspects of the influence of gravity on quantum systems. In order to achieve this aim, in many lectures, seminars and discussions we have strengthened the interplay between gravity and quantum systems starting from the situation in the early universe based on astrophysical observations, up to the earthly based experiments with atom interferometry for probing the structure of space-time. Thus we have had timely lectures on the quantum field and horizon of a black hole including reviews of the problem of black holes ...
In 1975 the Marcel Grossmann Meetings were established by Remo Ruffini and Abdus Salam to provide a forum for discussion of recent advances in gravitation, general relativity, and relativistic field theories. In these meetings, which are held once every three years, every aspect of research is emphasized - mathematical foundations, physical predictions, and numerical and experimental investigations. The major objective of these meetings is to facilitate exchange among scientists, so as to deepen our understanding of the structure of space-time and to review the status of both the ground-based and the space-based experiments aimed at testing the theory of gravitation.The Marcel Grossmann Meet...
This entertaining, eye-opening account of how the laws of thermodynamics are essential to understanding the world today—from refrigeration and jet engines to calorie counting and global warming—is “a lesson in how to do popular science right” (Kirkus Reviews). Einstein’s Fridge tells the incredible epic story of the scientists who, over two centuries, harnessed the power of heat and ice and formulated a theory essential to comprehending our universe. “Although thermodynamics has been studied for hundreds of years…few nonscientists appreciate how its principles have shaped the modern world” (Scientific American). Thermodynamics—the branch of physics that deals with energy an...
Between the cliché that 'a week is a long time in politics' and the aspiration of many political philosophers to give their ideas universal, timeless validity lies a gulf which the history of political thought is uniquely qualified to bridge. For that history shows that no conception of politics has dispensed altogether with time, and many have explicitly sought legitimacy in association with forms of history. Ranging from Justinian's law codes to rival Protestant and Catholic visions of political community after the Fall, from Hobbes and Spinoza to the Scottish Enlightenment, and from Kant and Savigny to the legacy of German Historicism and the Algerian Revolution, this volume explores multiple ways in which different conceptions of time and history have been used to understand politics since late antiquity. Bringing together leading contemporary historians of political thought, Time, History, and Political Thought demonstrates just how much both time and history have enriched the political imagination.